How much is a3-3a2b+3ab2+b3 less than A3+3a2b+3ab2+b3
Answers
Answered by
2
First of all let us know what is (a+b)^3 (“^” This is a power symbol)Since the expression is derived from (a+b)^3So let us expand it(a+b)^3= (a+b) (a+b) (a+b)={(a+b) (a+b)} (a+b)={a(a+b) + b(a+b)} (a+b)=(a^2 + ab + ab + b^2) (a+b)=(a^2 + b^2 + 2ab) (a+b)=a^2(a+b) + b^2(a+b) + 2ab(a+b)=a^3 + a^2b + ab^2 + b^3 + 2a^2b + 2ab^2=a^3 + b^3 + 3a^2b + 3ab^2=a^3 + b^3 + 3ab(a+b)We can equate it(a+b)^3 = a^3 + b^3 + 3ab(a+b)(a+b)^3 - 3ab(a+b) = a^3 + b^3a^3 + b^3 = (a+b)^3 - 3ab(a+b)
❤FØŁŁØW MƏ ❤✌
Similar questions