Physics, asked by Sudipta34, 11 months ago

How much mass should be hung from a wire that is 3.14 m long and 1 mm long to increase 1 mm length?
[Young Modulus (Y)=2×10¹¹N/m²]

Kindly don't Spam !!​

Answers

Answered by Anonymous
7

Given :

  • Length of the wire = 3.14 m
  • Diameter of the wire = 1 mm
  • Wire growth = 1 mm
  • Young modules = 2 × 10¹¹ N/m²

To find :

  • Mass of the object.

Solution :

We know the formula of Young modules.

{\boxed{\green{\large{\bold{Y=\dfrac{mgL}{Al}}}}}}

Terms identification :-

  • Y refers the Young modules.
  • m refers the mass of object.
  • g refers the acceleration of gravity.
  • L refers the length of wire.
  • A refers the area of cross section.
  • l refers the wire growth.

So,

★ L = 3.14 m

Y = 2 × 10¹¹ N/m²

★ g = 9.8 m/s²

★ l = 1 mm = 0.001 m

Diameter of the wire = 1 mm

Then,

Radius(r) = 0.5 mm = 0.0005 m

Now find the area of cross section of the wire

{\boxed{\large{\sf{A=\pi\:r^2}}}}

A = 3.14 × (0.0005)²

A = (3.14 × 0.0005×0.0005)

Now substitute all values in the formula of Young modules

{\large{\sf{\:\:\:\:\:\:\:\:Y=\dfrac{mgL}{Al}}}}

\implies\sf{2\times\:{10}^{11}=\frac{m\times\:9.8\times\:3.14}{3.14\times\:0.0005\times\:0.0005\times\:0.001}}\\ \\ \implies\sf{9.8\:m=0.0005\times\:0.0005\times\:0.001\times\:2\times\:{10}^{11}}\\ \\ \implies\sf{m=\frac{0.0005\times\:0.0005\times\:0.001\times\:2\times\:{10}^{11}}{9.8}}\\ \\ \implies\sf{m=\frac{5\times\:5\times\:10}{49}}\\ \\ \implies\sf{m=5.1}

{\purple{\boxed{\bold{m=5.1\: kg}}}}

Therefore 5.1 kg should be hung from the wire that is 3.14 m long.

Similar questions