Physics, asked by Aashalatha, 8 months ago

How much momentum will dum bell of mass 10kg transfer to the floor If it fall from a height of 80cm ?take downward acceleration as 10m/s^2

Answers

Answered by Anonymous
46

Answer:

40kg m/s

Explanation:

Given

Mass of the dúmb bell,m = 10kg

Distance covered by the dúmb-bell,s= 80 cm = 0.8m       [1cm =1/100m]

Acceleration in the downward direction,a = 10 m/s^2

Initial velocity of the dúmb-bell,u = 0

To Find :

Momentum,p = ?

Solution :

We know,

Momentum (p) = Mass (m) × velocity (v)

We don’t know it’s  velocity,so let’s find out it’s velocity first.

According to third equation of motion

\sf{}v^2=u^2+2as

\sf{}\Rightarrow v^2=0+2 \times 10ms^{-2}\times 0.8m

\sf{}\Rightarrow v^2=16m/s

\sf{}\Rightarrow v^2=16m^2s^{-2}

\sf{}\Rightarrow v=\sqrt{16m^2s^{-2}}

\sf{}\therefore v=4m/s

Now,we know both velocity and mass

Therefore moentum of the dùmb-bell:

\sf{}\Rightarrow 10kg\times 4m/s

\sf{}\therefore 40kg\ m/s

Answered by DARLO20
65

\sf{\pink{\underline{\underline{\purple{GIVEN:-}}}}}

  • Mass (m) = 10kg

  • Height (h) = 80cm = 0.8m

  • Acceleration (a) = 10m/

\sf{\pink{\underline{\underline{\purple{TO\: FIND:-}}}}}

  • Momentum = ??

\sf{\pink{\underline{\underline{\purple{SOLUTION:-}}}}}

We have know that,

  • initial velocity (u) = 0m/

\orange\star\:\bf{\gray{\boxed{\boxed{\red{v^2\:=\:u^2\:+\:2as\:}}}}}

Where,

  • v = final velocity

  • u = 0m/s

  • a = 10m/

  • s = 0.8m

\rm{\implies\:v^2\:=\:0^2\:+\:2\times{10}\times{0.8}\:}

\rm{\implies\:v^2\:=\:0\:+\:20\times{0.8}\:}

\rm{\implies\:v\:=\:\sqrt{16}\:}

\rm\pink{\implies\:v\:=\:4\:m/s\:}

☃️ Now, Momentum transferred to ground,

\green\star\:\bf{\gray{\boxed{\boxed{\red{p\:=\:mv\:}}}}}

Where,

  • p = momentum

  • m = 10kg

  • v = 4m/s

\rm{\implies\:p\:=\:10\times{4}\:}

\rm\pink{\implies\:p\:=\:40\:kg.m.s^{-1}\:}

\rm\green{\therefore} Momentum transferred to the ground is “40 kg.m/s

Similar questions