Math, asked by bharatdkhadse1178, 1 year ago

How much term are in the sequence 1,5,7,11.........,77

Answers

Answered by skbhandari60
3

Answer:


Step-by-step explanation:

a=1

d=4

l=77

we know that,

an=a+(n-1)d

77=1+(n-1)4

76/4=n-1

n=19+1=20

...

hope it is helpful to you

Answered by silentlover45
8

\pink{\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star}

\large\underline{Given:-}

  • Ap ⇢ 1, 5, 7, 11 ............ 77
  • first term ⇢ 1
  • last term ⇢ 77

\large\underline{To find:-}

  • find the number of terms in the Ap.

\large\underline{Solutions:-}

\: \: \: \: \: \star \: \: \: {a_n} \: \: = \: \: {a} \: + \: {( {n} \: - \: {1})} \: d

  • \: \: \: \: \: \leadsto \: \: {a} \: \: = \: \: {1}
  • \: \: \: \: \: \leadsto \: \: {n} \: \: = \: \: {?}
  • \: \: \: \: \: \leadsto \: \: {a_n} \: \: = \: \: {77}
  • \: \: \: \: \: \leadsto \: \: {d} \: \: \leadsto \: \: {a_2} \: - \: {a_1} \: \: \leadsto \: \: {5} \: - \: {1} \: \: \leadsto \: \: \leadsto \: \: {4}

»★ Now,

\: \: \: \: \: {77} \: \: = \: \: {a} \: + \: {( {n} \: - \: {1})} \: {4}

\: \: \: \: \: {77} \: \: = \: \: {1} \: + \: {4n} \: - \: {4}

\: \: \: \: \: {77} \: \: = \: \: {4n} \: - \: {3}

\: \: \: \: \: {77} \: + \: {3} \: \: = \: \: {4n}

\: \: \: \: \: {80} \: \: = \: \: {4n}

\: \: \: \: \: {n} \: \: = \: \: \frac{80}{4}

\: \: \: \: \: {n} \: \: = \: \: {20}

»★ Hence,

\: \: \: \: \: \star \: \: \: The \: \: {20th} \: \: term \: \: are \: \: in \: \: the \: \: sequence. \: \: \: \star

\red{\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star}

Similar questions