Math, asked by uthiravasagan4028, 1 month ago

How much will rs 100000 amount to in 3 years, compounded yearly, if the rates of the successive years are 6%, 8% and 10% respectively?

Answers

Answered by BrainlyTwinklingstar
4

Given :

Principle : ₹100000

Rate of interest(s) : 6%, 8%, 10%

Time : 3 years

To find :

The amount obtained after 3 years.

Solution :

We can find the value of the amount by it's formula.

\sf \dashrightarrow Amount = Principle \bigg( 1 + \dfrac{R_1}{100} \bigg) \bigg( 1 + \dfrac{R_2}{100} \bigg) \bigg( 1 + \dfrac{R_3}{100} \bigg)

\sf \dashrightarrow 100000 \bigg( 1 + \dfrac{6}{100} \bigg) \bigg( 1 + \dfrac{8}{100} \bigg) \bigg( 1 + \dfrac{10}{100} \bigg)

\sf \dashrightarrow 100000 \bigg( 1 + \dfrac{3}{50} \bigg) \bigg( 1 + \dfrac{2}{25} \bigg) \bigg( 1 + \dfrac{1}{10} \bigg)

\sf \dashrightarrow 100000 \bigg( \dfrac{50 + 3}{50} \bigg) \bigg( \dfrac{25 + 2}{25} \bigg) \bigg( \dfrac{10 + 1}{10} \bigg)

\sf \dashrightarrow 100000 \bigg( \dfrac{53}{50} \bigg) \bigg( \dfrac{27}{25} \bigg) \bigg( \dfrac{11}{10} \bigg)

\sf \dashrightarrow 2000 \bigg( \dfrac{53}{1} \bigg) \bigg( \dfrac{27}{25} \bigg) \bigg( \dfrac{11}{10} \bigg)

\sf \dashrightarrow 80 \bigg( \dfrac{53}{1} \bigg) \bigg( \dfrac{27}{1} \bigg) \bigg( \dfrac{11}{10} \bigg)

\sf \dashrightarrow 8 \bigg( \dfrac{53}{1} \bigg) \bigg( \dfrac{27}{1} \bigg) \bigg( \dfrac{11}{1} \bigg)

\sf \dashrightarrow 8 (53 \times 27 \times 11)

\sf \dashrightarrow 8 (15741)

\dashrightarrow\sf 125928

Hence, the amount obtained after 3 years is ₹125928.

Answered by yashsalunke2202
0

Step-by-step explanation:

principal=100000

time=3 year

at rate=6%,8%,10%

at first 6%

 si = p  \times r \times t \div 100

si=100000×6×3÷100

si = 1000 \times 6 \times 3

si = 18000

compounded = simple interest + principle

compounded = 100000 + 18000

compounded = 118000

by rate 8%

 si = p  \times r \times t \div 100

si=100000×8×3÷100

si = 1000 \times 8\times 3

si = 24000

compounded = simple interest + principle

compounded=100000+24000

compounded = 124000

by rate 10%

 si = p  \times r \times t \div 100

si=100000×10×3÷100

si = 1000 \times 10\times 3

si = 30000

compounded = simple interest + principle

compounded=100000+30000

compounded = 13000

Similar questions