How rotating magnetic field is produced in the stator of a three phase induction motor
Answers
Answered by
2
The stator of the motor consists of overlapping winding offset by an electrical angle of 120°. When the primary winding or the stator is connected to a 3 phase AC source, it establishes a rotating magnetic field which rotates at the synchronous speed.
Secrets Behind the Rotation:
According to Faraday’s law an emf induced in any circuit is due to the rate of change of magnetic flux linkage through the circuit. As the rotor winding in an induction motor are either closed through an external resistance or directly shorted by end ring, and cut the stator rotating magnetic field, an emf is induced in the rotor copper bar and due to this emf a current flows through the rotor conductor.
Here the relative speed between the rotating flux and static rotor conductor is the cause of current generation; hence as per Lenz's law the rotor will rotate in the same direction to reduce the cause i.e. the relative velocity
Secrets Behind the Rotation:
According to Faraday’s law an emf induced in any circuit is due to the rate of change of magnetic flux linkage through the circuit. As the rotor winding in an induction motor are either closed through an external resistance or directly shorted by end ring, and cut the stator rotating magnetic field, an emf is induced in the rotor copper bar and due to this emf a current flows through the rotor conductor.
Here the relative speed between the rotating flux and static rotor conductor is the cause of current generation; hence as per Lenz's law the rotor will rotate in the same direction to reduce the cause i.e. the relative velocity
Similar questions