Math, asked by thePOTTERHEAD, 1 year ago

How should I solve this?

Attachments:

Answers

Answered by Anonymous
59

Question:

Evalute:

\int\limits_{0}^{ π } \frac{x \: sinx}{1 + sinx} dx

Solution:

let \: I =\int\limits_{0}^{π} \frac{xsinx}{1 + sinx} dx ........(1)\\  \\ I = \int\limits_{0}^{π} \frac{( π  - x)sinx( π - x) }{1 + sin( π - x} dx \\  \\

Note: Using Property

\int\limits_{0}^{a}f(x)dx = \int\limits_{0}^{a}f( a- x)dx

I=\int\limits_{0}^{π} \frac{(π - x)sinx}{1 + sinx} ..............(2)

Adding (1) and (2) ,

2I = \int\limits_{0}^{π} \frac{πsinx}{1 + sinx} dx \\  \\ 2I = π \int\limits_{0}^{π} \frac{sinx}{1 + sinx} dx \\  \\ I =  \frac{π}{2} \int\limits_{0}^{π} \frac{sinx}{1 + sinx} dx.........(3) \\  \\

Now,

I = \int\limits_{0}^{π} \frac{sinx}{1 + sinx}

[Add and subtract 1 ]

I= \int\limits_{0}^{π} \frac{(1 + sinx) - 1}{1 + sinx} dx \\  \\I =  \int\limits_{0}^{π}(1 -  \frac{1}{1 +  sinx } )dx \\  \\  \:  \:  = \int\limits_{0}^{π}1.dx - \int\limits_{0}^{π} \frac{1 - sinx}{(1 + sinx)(1 - sinx)} dx \\  \\  \:  \:  = [x]limit_{0}^{π} - \int\limits_{0}^{π} \frac{1 - sinx}{1 -  {sin}^{2}x } dx \\  \\  \:  \:  = (π - 0) - \int\limits_{0}^{π} \frac{1 - sinx}{ {cos}^{2}x } dx \\  \\  \:  \:  = π - \int\limits_{0}^{π}  ({sec}^{2} x - secx \: tanx)dx \\  \\  \:  \:  = π- [tanx - secx]limit_{0}^{π}  \\  \\  \:  \:  = π - [(tan π - secπ) - (tan0 - sec0)] \\  \\  \:  \:  = π - [(0 - 1) - (0 - 1)] \\  \\  \:  \:  = π - 2 \\  \\

Putting in (3),

I =  \frac{π}{2} (π - 2) \\  \\  \:  \:  =  \frac{ {π}^{2} }{2}  - π

Similar questions