Math, asked by pankajjhajhria6950, 1 year ago

How sin square theta plus cos square theta equal 1?

Answers

Answered by dishagaur748
0

here is your answer

Attachments:
Answered by shadowsabers03
1

     

$$\sf{We know that,}$ \\ \\ \sin\theta=\frac{\sf{opposite\ side}}{\sf{hypotenuse}} \\ \\ \sf{\&} \\ \\ \cos\theta=\frac{\sf{adjacent\ side}}{\sf{hypotenuse}}

$$\sf{Let the opposite side, adjacent side and hypotenuse be}$\ a,\ b\ $\sf{and}$\ c\ $\sf{respectively.} \\ \\ \\

$$\sf{So that}$\ \ a^2+b^2=c^2

\sin\theta=\frac{a}{c} \ \ \ \ \ \Longrightarrow\ \ \ \ \ \sin^2\theta=(\frac{a}{c})^2=\frac{a^2}{c^2} \\ \\ \\ \cos\theta=\frac{b}{c} \ \ \ \ \ \Longrightarrow\ \ \ \ \ \cos^2\theta=(\frac{b}{c})^2=\frac{b^2}{c^2} \\ \\ \\ \\ \boxed{\sin^2\theta+\cos^2\theta=\frac{a^2}{c^2}+\frac{b^2}{c^2}=\frac{a^2+b^2}{c^2}=\frac{c^2}{c^2}=1}

\therefore\ \sin^2\theta+\cos^2\theta=1

$$\sf{Plz mark it as the brainliest. \\ \\ \\ Plz ask me if you've any doubt. \\ \\ \\ Thank you. :-))}

   

Similar questions