How strong is gravity on other planets?
Answers
Answer:
Here is your right answer dear
Explanation:
Gravity is a fundamental force of physics, one which we Earthlings tend to take for granted. You can't really blame us. Having evolved over the course of billions of years in Earth's environment, we are used to living with the pull of a steady 1 g (or 9.8 m/s2). However, for those who have gone into space or set foot on the Moon, gravity is a very tenuous and precious thing.
Basically, gravity is dependent on mass, where all things – from stars, planets, and galaxies to light and sub-atomic particles – are attracted to one another. Depending on the size, mass and density of the object, the gravitational force it exerts varies. And when it comes to the planets of our solar system, which vary in size and mass, the strength of gravity on their surfaces varies considerably.
For example, Earth's gravity, as already noted, is equivalent to 9.80665 m/s2 (or 32.174 ft/s2). This means that an object, if held above the ground and let go, will accelerate towards the surface at a speed of about 9.8 meters for every second of free fall. This is the standard for measuring gravity on other planets, which is also expressed as a single g.
In accordance with Isaac Newton's law of universal gravitation, the gravitational attraction between two bodies can be expressed mathematically as F = G (m1m2/r2) – where F is the force, m1 and m2 are the masses of the objects interacting, r is the distance between the centers of the masses and G is the gravitational constant (6.674×10-11 N m2/kg2 ).