how to answer this question
please solve this problem
Attachments:
Answers
Answered by
1
LHS = ( tanA + sinA )/(tanA - sinA )
Multiply numerator and denominator
with cotA
=[CotA(tanA+sinA )]/[cotA(tanA-sinA)]
= (CotAtanA+cotAsinA)/(cotAtanA-
cotAsinA )
= [ 1 + ( cosA/sinA)sinA]/[ 1-
(cosA/sinA)sinA ]
[ Since cotA tanA = 1 ]
= ( 1 + cosA ) / ( 1 - cos A )
= ( 1 + 1/ secA ) ( 1 - 1/ secA )
=[ ( SecA + 1 ) /secA ]/[(secA-1)/secA]
= ( SecA + 1 ) / ( secA - 1 )
= RHS
Multiply numerator and denominator
with cotA
=[CotA(tanA+sinA )]/[cotA(tanA-sinA)]
= (CotAtanA+cotAsinA)/(cotAtanA-
cotAsinA )
= [ 1 + ( cosA/sinA)sinA]/[ 1-
(cosA/sinA)sinA ]
[ Since cotA tanA = 1 ]
= ( 1 + cosA ) / ( 1 - cos A )
= ( 1 + 1/ secA ) ( 1 - 1/ secA )
=[ ( SecA + 1 ) /secA ]/[(secA-1)/secA]
= ( SecA + 1 ) / ( secA - 1 )
= RHS
Answered by
1
Hey friend, sin /cos +sin the whole divided by sin/cos-sin gives, sin+sin*cos /cos the whole divided by sin -sin*cos /cos, Taking sin theta common from both numerator and denominator which gives, sin(1+cos) /cos the whole divided by sin(1-cos) /cos, 1/cos+ cos/cos the whole divided by 1/cos - cos/cos =sec+1 /sec-1 = RHS.. (Proved) Hope this will help you.
Similar questions