Math, asked by selinalim2401, 21 days ago

how to calculate the length of the side x?​

Attachments:

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

In right angle triangle ABC, right angled at C, it is given that AB = 5 cm and BC = 3 cm.

So, Using Pythagoras Theorem, we have

\rm \:  {AB}^{2} =  {AC}^{2} +  {BC}^{2}  \\

\rm \:  {5}^{2} =  {AC}^{2} +  {3}^{2}  \\

\rm \:  25 =  {AC}^{2} +  9  \\

\rm \:  25  - 9=  {AC}^{2}  \\

\rm \:  16=  {AC}^{2}  \\

\rm \:   {4}^{2} =  {AC}^{2}  \\

\rm\implies \:AC \:  =  \: 4 \: cm \\

From figure, we concluded that AC = CD

So, it implies AD = AC + CD = 4 + 4 = 8 cm.

Now, in right angle triangle ADE, right angled at D, we have

AD = 8 cm

AE = x cm

sin m = 0.48

So,

\rm \: sin \: m \:  =  \: \dfrac{AD}{AE}  \\

\rm \: 0.48 \:  =  \: \dfrac{8}{x}  \\

\rm \: 0.48x \:  =  \: 8

\rm \: x = \dfrac{8}{0.48}  \\

\rm \: x = \dfrac{800}{48}  \\

\rm \: x = \dfrac{50}{3}   \: cm \: \\

\rule{190pt}{2pt}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Answered by xxblackqueenxx37
24

 \sf\fbox\red{your\:Solution}

 \: \sf \:    \: from \: pythagoras \: theorem \:   \\  \\  \sf→ \:  {AB}^{2}  =  {AC}^{2}  +  {BC}^{2}  \\  \sf \: →  {5}^{2}  = {AC}^{2} +  {3}^{2}  \\  \sf \: →25 = {AC}^{2} + 9 \\  \sf \: → {AC}^{2} = 25 - 9 \\  \sf \: →{AC}^{2} \:  =  \sqrt{16}  \\  \sf \: → {AC}^{2}  =  {4}^{2}  \\   \sf \: →AC = 4

___________________________________

 \: \sf \: as \: shown \: in \: figure \: →AC=DC \\  \sf \: therefore \: we \: get \: that  \\ \\  \sf \: →AD=AC+CD \\  \sf \: →AD = 4  + 4 \\  \sf→AD  = 8cm \\  \\

___________________________________

 \sf \: AE = X cm \\  \sf Sin  \: m  = 0.48 \\  \\   \sf  →\frac{AD}{AE}  \sf \:  = Sin  \: m  \:  \:  \:  \:  \:    \\    \sf \: → \frac{8cm}{x}  = 0.48  \:  \:  \:  \:  \:  \:  \:  \:  \\   →x =  \frac{0.48}{8}  \times 100  \\   →x =  \frac{800}{48}  \times  \frac{16}{16} \:  \:  \:   \\   →x =  \frac{50}{3} cm \:  \:  \:  \:  \:  \:  \:  \:  \:   \\

___________________________________

 \sf \: therefore \:   \\ \\  \sf \red{→AC = 4} \:  \:  \:  \:  \:  \:  \\  \sf\pink {→AD = 8 } \:  \:  \:  \:  \: \\ \sf  \orange {→X =  \frac{50}{3} cm}

___________________________________

\sf\fbox\red{additional information}

The six trigonometric ratios :-

  • sine (sin)
  • cosine (cos)
  • tangent (tan)
  • cotangent (cot)
  • cosecant (cosec)
  • secant (sec).

definition :-

  • sine: Sine of an angle is defined as the ratio of the side opposite(perpendicular side) to that angle to the hypotenuse.

  • cosine: Cosine of an angle is defined as the ratio of the side adjacent to that angle to the hypotenuse.

  • tangent: Tangent of an angle is defined as the ratio of the side opposite to that angle to the side adjacent to that angle.

  • cotangent: Cotangent is the multiplicative inverse of the tangent

  • cosecant: Cosecant is a multiplicative inverse of sine.

  • secant: Secant is a multiplicative inverse of cosine.

some value of trigonometry ratio :-

  • Sin 30° = 1/2
  • Cos 30° = √3/2
  • tan 30° = 1/√3
  • sin 60° = √3/2
  • cos 45° = 1/√2
  • tan 45° = 1
Similar questions