Physics, asked by ehiijigah, 3 days ago

How to check the correctness of the equation v^2-u^2=2as dimensionally

Answers

Answered by sayantan735
0

Answer:

v² – u² = 2as

v = final velocity

(Unit = m/s)

Dimension = [L / T]

u = initial velocity

(Unit = m/s)

Dimension = [L / T]

a = acceleration

(Unit = m/s²)

Dimension = [L / T²]

s = displacement

(Unit = m)

Dimension = [L]

The equation —

v² – u² = 2as

Dimension-wise —

[L / T]² – [L / T]² = 2 [L / T²] [L]

When considering dimensions,

》Subtraction of similar dimensions results in the same dimension

》Multiplication with a constant doesn't change the dimension

So,

[L / T]² – [L / T]² = 2 [L / T²] [L]

=> [L² / T²] – [L² / T²] = 2 [L / T²] [L]

=> [L² / T²] = [L² / T²]

=> LHS = RHS

Hence, the equation is correct.

Hope this helps you :)

Answered by aparnaappu8547
1

Answer:

The dimensional correctness of the equation v^{2} -u^{2} = 2aS can be checked by checking the dimensions of each term.

Dimension of v^{2} = M^{0} L^{2} T^{-2}

Dimension of u^{2} = M^{0} L^{2} T^{-2}

Dimension of 2aS = M^{0} L^{2} T^{-2}

Explanation:

We know velocity = distance ÷ time

Dimension of distance = M^{0} L^{1} T^{0}

Dimension of time = M^{0} L^{0} T^{1}

∴ Dimension of velocity = M^{0} L^{1} T^{0} ÷ M^{0} L^{0} T^{1}

                                       = M^{0} L^{1} T^{-1}

∴Dimension of v^{2} = u^{2} = (M^{0} L^{1} T^{-1})^{2}

                                     = M^{0} L^{2} T^{-2}

We know acceleration a = velocity ÷ time

∴ Dimension of a = M^{0} L^{1} T^{-1} ÷ M^{0} L^{0} T^{1}

                             = M^{0} L^{1} T^{-2}

Dimension of displacement S = M^{0} L^{1} T^{0}

∴Dimension of 2aS = M^{0} L^{1} T^{-2} × M^{0} L^{1} T^{0}

                                = M^{0} L^{2} T^{-2}

Since dimension of v^{2} = u^{2} = 2aS, the equation is dimensionally correct.

Similar questions