how to convert alcohol to cyanide
Answers
Synthesis of Nitriles
Related:
Name Reactions
Schmidt Reaction
Recent Literature
The use of an O-protected oxime rather than an explosive O-protected hydroxylamine enables a safe, Brønsted acid-catalyzed synthesis of nitriles via O-protected aldoximes through transoximation. The reaction could be performed on a 1 g scale.
K. Hyodo, K. Togashi, N. Oishi, G. Hasegawa, K. Uchida, Org. Lett., 2017, 19, 3005-3008.
The Schmidt reaction of aldehydes with NaN3 furnishes the corresponding nitriles in near quantitative yields in the presence of TfOH and tolerates various electron-withdrawing and electron-donating substituents. Formanilides, common side products, are not observed. The reaction is easily scalable, high yielding, and nearly instantaneous.
B. V. Rokade, J. R. Prabhu, J. Org. Chem., 2012, 77, 5364-5370.
Participation of 'activated DMSO' in the one-pot transformation of aldehydes to nitriles allows the generation of a wide range of aromatic, heterocyclic, and aliphatic nitriles with water as the only byproduct. A straightforward and practical procedure is demonstrated on a multigram scale.
J. K. Augustine, A. Bombrun, R. N. Atta, Synlett, 2011, 2223-2227.
A deep eutectic mixture of choline chloride and urea (1:2) is an efficient and ecofriendly catalyst for the one-pot synthesis of nitriles from aldehydes under solvent-free conditions under both conventional and microwave irradiation. Nitriles were obtained in good to excellent yields.
U. B. Patil, S. S. Shendage, J. M. Nagarkar, Synthesis, 2013, 45, 3295-3299.
In the presence of a catalytic amount of 4-AcNH-TEMPO, NaNO2, and HNO3, benzaldehydes underwent condensation with NH4OAc and a subsequent aerobic oxidation to produce nitriles selectively under O2. Aerobic oxidative conversion of a primary alcohol is also achieved.
J.-H. Noh, J. Kim, J. Org. Chem., 2015, 80, 11624-11628.
A copper-promoted C≡N triple bond cleavage of coordinated cyanide anion under a dioxygen atmosphere enables a nitrogen transfer to various aldehydes via a single electron-transfer process. This protocol provides a new cleavage pattern for the cyanide ion and maybe a more useful synthetic pathway to nitriles from aldehydes.
Q. Wu, Y. Luo, A. Lei, J. You, J. Am. Chem. Soc., 2016, 138, 2885-2888.
A mild, aerobic, catalytic synthesis of nitriles directly from alcohols and aqueous ammonia proceeds via a dehydrogenation cascade mediated by catalytic CuI, bpy, and TEMPO in the presence of oxygen. The substrate scope includes various functionalized aromatic and aliphatic alcohols. This protocol also enabled a one-pot synthesis of various biaryl heterocycles directly from commercially available alcohols.
W. Yin, C. Wang, H. Huang, Org. Lett., 2013, 15, 1850-1853.
A direct conversion of a wide range of aliphatic, benzylic, heteroaromatic, allylic, and propargyl alcohols into nitriles with 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), iodosobenzene diacetate, and ammonium acetate as a nitrogen source proceeds through an oxidation-imination-aldimine oxidation sequence in situ. Highly chemoselective ammoxidation of primary alcohols in the presence of secondary alcohols was also achieved.
J.-M. Vatèle, Synlett, 2014, 25, 1275-1278.
Various alcohols were efficiently converted into the corresponding nitriles at room temperature by treatment with tert-butyl hypochlorite, diiodine, or 1,3-diiodo-5,5-dimethylhydantoin (DIH) in the presence of TEMPO, followed by treatment with diiodine and aqueous ammonia. The nitriles were obtained in good yields and high purities by a simple extraction of the reaction mixture with chloroform and subsequent removal of the solvent.
H. Shimojo, K. Moriyama, H. Togo, Synthesis, 2013, 45, 2155-2156.
An efficient one-pot conversion of various alcohols, aldehydes and primary amines into the corresponding nitriles in excellent yields was easily achieved by the use of trichloroisocyanuric acid (TCCA) as an oxidant in aqueous ammonia. Also, various benzylic halides were smoothly and directly converted into the corresponding aromatic nitriles in high yields under the same conditions.
.
.
Survival of the fittest was proposed by Charles Darwin