Math, asked by Anonymous, 4 days ago

How to differentiate cube root of sin x with respect to x? Tell me correct way please.

Answers

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Given function is

\rm \:  \sqrt[3]{sinx}  \\

Let assume that

\rm \: y =  \sqrt[3]{sinx}  \\

can be rewritten as

\rm \: y =  {\bigg(sinx\bigg) }^{\dfrac{1}{3} }  \\

On differentiating both sides w. r. t. x, we get

\rm \: \dfrac{d}{dx}y = \dfrac{d}{dx} {\bigg(sinx\bigg) }^{\dfrac{1}{3} }  \\

We know,

\boxed{\sf{  \:\rm \: \dfrac{d}{dx} {x}^{n} \:  =  \:  {nx}^{n - 1} \:  \: }} \\

and

\boxed{\sf{  \:\rm \: \dfrac{d}{dx}f[g(x)] = f'[g(x)] \: \dfrac{d}{dx}g(x) \: }} \\

So, using these results, we get

\rm \: \dfrac{dy}{dx}= \dfrac{1}{3} {\bigg(sinx\bigg) }^{\dfrac{1}{3}  \: -  \: 1 } \dfrac{d}{dx}sinx \\

\rm \: \dfrac{dy}{dx}= \dfrac{1}{3} {\bigg(sinx\bigg) }^{\dfrac{1 - 3}{3}}  \times cosx \\

\rm \: \dfrac{dy}{dx}= \dfrac{1}{3} {\bigg(sinx\bigg) }^{\dfrac{- 2}{3}}  \times cosx \\

\rm\implies \:\dfrac{dy}{dx} = \dfrac{cosx}{3 {\bigg(sinx \bigg) }^{\dfrac{2}{3} } }  \\

Or

\rm\implies \:\dfrac{dy}{dx} = \dfrac{cosx}{3 \:  \sqrt[3]{ {sin}^{2} x} }  \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Answered by maheshtalpada412
0

Answer:

Let,

 \tt \[ f(x)=\sqrt[3]{\sin x} \]

By using first principles

 \red{\[ \begin{array}{l} \tt f^{\prime}(x)=\underset{h \rightarrow 0}{ \lim} \dfrac{f(x+h)-f(x)}{h} \\ \\  \tt f^{\prime}(x)=\underset{h \rightarrow 0} { \lim}\dfrac{\sqrt[3]{\sin (x+h)}-\sqrt[3]{\sin x}}{h} \end{array} \]}

 \text{The above is of  \: \( \dfrac{0}{0} \)  \:  \: form so apply L'Hopital's rule,}

\color{darkcyan}\[ \begin{array}{l} \tt =\underset{h \rightarrow 0}{\lim} \dfrac{\dfrac{\cos (x+h)}{3 \sin ^{\frac{2}{3}}(x+h)}-0}{1} \qquad\left[\text { Since } \dfrac{d}{d x}\right.  \left.(\sqrt[3]{\sin (x)})=\dfrac{\cos (x)}{3 \sin ^{\frac{2}{3}}(x)}\right] \end{array} \]

Apply the limit h=0.

 \color{olive}\[ \begin{array}{l} \tt f^{\prime}(x)=\dfrac{\cos x}{3 \sin ^{\frac{2}{3}} x} \\ \\  \tt \Longrightarrow f^{\prime}(x)=\dfrac{\cos x}{3 \sqrt[3]{\sin ^{2} x}} \end{array} \]

Similar questions