How to do integration of
Answers
Answered by
17
Answer:
I=∫(
√
tanx
+
√
cotx
)dx
=∫
sinx+cosx
√
sinxcosx
dx
Putting sinx−cosx=u, du=(cosx+sinx)dx,u2=1−2sinxcosx,sinxcosx=
u2−1
2
I=∫
√
2
du
√
1−u2
=
√
2
arcsinu+C=
√
2
arcsin(sinx−cosx)+C
where C is an arbitrary constant for indefinite integral.
Similar questions