Math, asked by LordGs, 10 months ago

How to do integration of
 \sqrt{ \cot(x) }

Answers

Answered by Anonymous
17

Answer:

I=∫(

tanx

+

cotx

)dx

=∫

sinx+cosx

sinxcosx

dx

Putting sinx−cosx=u, du=(cosx+sinx)dx,u2=1−2sinxcosx,sinxcosx=

u2−1

2

I=∫

2

du

1−u2

=

2

arcsinu+C=

2

arcsin(sinx−cosx)+C

where C is an arbitrary constant for indefinite integral.

Similar questions