Math, asked by sanjanac029, 10 months ago

How to do question 336....please solve fast
بما​

Attachments:

Answers

Answered by BrainlyIAS
2

Answer:

Mark as brainliest if it helps

Attachments:
Answered by Sharad001
60

Question :-

Solve this limit .

 \leadsto \: \lim_{x\to \:  \frac{ \pi}{6} } \:  \frac{ \sin \big(x -  \frac{ \pi}{6}  \big)}{ \frac{ \sqrt{3} }{2} -  \cos x }  \\

Answer :-

  \implies \: \frac{ 3\sqrt{3}  +\pi}{2\pi}  \:  \\

Explanation :-

We have -

 \leadsto \: \lim_{x\to \:  \frac{ \pi}{6} } \:  \frac{ \sin \big(x -  \frac{ \pi}{6}  \big)}{ \frac{ \sqrt{3} }{2} -  \cos x }  \\  \:

apply LH rule ( L- hospital )

LH rule :-

→ Here we do differentiation of denominator and nominator.

Hence ,

 \implies \sf{\lim_{x\to \:  \frac{ \pi}{6} } \:  \frac{  \frac{d}{dx} \sin \big(x -  \frac{ \pi}{6}  \big)}{  \frac{d}{dx} \big( \frac{ \sqrt{3} }{2} -  \cos x  \big)}  }\\  \\  \because  \boxed{ \sf{ \frac{d}{dx}  \sin x =  \cos x \:  }} \\  and \:  \\  \:  \:  \:  \:   \sf{ \boxed{  \sf{\frac{d}{dx}  \cos x =  -  \sin x}}} \\  \\  \to \: \lim_{x\to \:  \frac{ \pi}{6} } \:  \frac{ \cos \big(x -  \frac{ \pi}{6}  \big)}{   \sin x }  \\  \:

and , we know that

→ Cos (A+B) = Cos A .Cos B + Sin A.Sin B

Hence ,

 \to \: \lim_{x\to \:  \frac{ \pi}{6} } \:  \frac{ \cos x. \cos \frac{ \pi}{6}  +  \sin x \sin \frac{ \pi}{6} }{   \sin x }  \\  \:  \:  \\  \to  \lim_{x\to \:  \frac{ \pi}{6} }  \bigg( \frac{ \sqrt{3} }{2\tan x}  +  \frac{1}{2}  \bigg) \\  \\  \to \: \lim_{x\to \:  \frac{ \pi}{6} } \bigg( \frac{ \sqrt{3} }{2}  \frac{x }{x\tan x}  +  \frac{1}{2}  \bigg) \\  \\  \to \: \lim_{x\to \:  \frac{ \pi}{6} } \:   \frac{ \sqrt{3} }{2x}  +  \frac{1}{2}  \\  \\ \bf{ taking \: limit \:}  \\  \\  \to \:  \frac{ \sqrt{3} }{2}  \times  \frac{6}{\pi}  +  \frac{1}{2}  \\  \\  \to \:  \frac{  3\sqrt{3} }{\pi}  +  \frac{1}{2}  =  \frac{ 3\sqrt{3}  +\pi}{2\pi}

Similar questions