Math, asked by vedikaa78, 9 months ago

How to do this sum? Which have a triangle with AB=5cm and angle C with 30 degree

Attachments:

Answers

Answered by tennetiraj86
21

Answer:

answer for the given problem is given

Attachments:
Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
6

\huge\sf\pink{Answer}

☞ AC is 10 cm & BC is 5√3 cm

━━━━━━━━━━━━━

\huge\sf\blue{Given}

✭ AB = 5 cm

✭ ∠ACB = 30°

━━━━━━━━━━━━━

\huge\sf\gray{To \:Find}

◈ The length of AC & BC?

━━━━━━━━━━━━━

\huge\sf\purple{Steps}

We know that,

\underline{\boxed{\sf sin\theta= \dfrac{Opposite}{Hypothenuse}}}

Here for θ = 30°

◕ Opposite side = AB

◕ Adjacent side = BC

◕ Hypothenuse = AC

Substituting the given values,

\sf sin \ 30^{\circ} = \dfrac{5}{AC}

\bigg\lgroup\sf sin \ 30^{\circ} = \dfrac{1}{2}\bigg\rgroup

\sf \dfrac{1}{2} = \dfrac{5}{AC}

\sf AC = 5 \times 2 «« Cross Multiply »»

\sf \red{AC = 10 \ cm}

Similarly we know that,

\underline{\boxed{\sf tan\theta = \dfrac{Opposite}{Adjacent}}}

Substituting the values,

\sf tan \ 30^{\circ} = \dfrac{5}{BC}

\bigg\lgroup\sf tan \ 30^{\circ} = \dfrac{1}{\sqrt{3}}\bigg\rgroup

\sf \dfrac{1}{\sqrt{3}} = \dfrac{5}{BC}

\sf BC = 5 \times \sqrt{3} «« Cross Multiply »»

\sf \orange{BC = 5\sqrt{3} \ cm}

━━━━━━━━━━━

More Trigonometric Values

\Large{ \begin{tabular}{|c|c|c|c|c|c|} \cline{1-6} \theta & \sf 0^{\circ} & \sf 30^{\circ} & \sf 45^{\circ} & \sf 65^{\circ} & \sf 90^{\circ} \\ \cline{1-6} $ \sin $ & 0 & $\dfrac{1}{2 }$ & $\dfrac{1}{ \sqrt{2} }$ & $\dfrac{ \sqrt{3}}{2}$ & 1 \\ \cline{1-6} $ \cos $ & 1 & $ \dfrac{ \sqrt{ 3 }}{2} } $ & $ \dfrac{1}{ \sqrt{2} } $ & $ \dfrac{ 1 }{ 2 } $ & 0  \\ \cline{1-6} $ \tan $ & 0 & $ \dfrac{1}{ \sqrt{3} } $ & 1 & $ \sqrt{3} $ & $ \infty $    \\ \cline{1-6} \cot & $ \infty $ &$ \sqrt{3} $ &  1 &  $ \dfrac{1}{ \sqrt{3} } $ &0 \\  \cline{1 - 6} \sec & 1 & $ \dfrac{2}{ \sqrt{3}} $ & $ \sqrt{2} $ & 2 & $ \infty $ \\  \cline{1-6} \csc & $ \infty $ & 2 & $ \sqrt{2 } $ & $ \dfrac{ 2 }{ \sqrt{ 3 } } $ & 1  \\  \cline{1 - 6}\end{tabular}}

━━━━━━━━━━━━━━━━━━

Similar questions