Math, asked by pragsroay2005, 11 days ago

How to do this type of questions

Attachments:

Answers

Answered by Anonymous
10

Given that,

a, b and c are in AP and 1/a², 1/b² and 1/c² also in AP.

Therefore common difference will be same between two consecutive terms.

1/c² - 1/b² = 1/b² - 1/a²

1/c² + 1/a² = 1/b² + 1/b²

1/c² + 1/a² = 2/b²

Hence option (1) is correct.

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given that

 \red{\rm :\longmapsto\:a,b,c \: are \: in \: AP \: }

 \red{\rm \implies\:b - a = c - b -  -  -  - (1)}

Also, given that,

\rm :\longmapsto\:\dfrac{1}{ {a}^{2} }, \: \dfrac{1}{ {b}^{2} }, \:  \dfrac{1}{ {c}^{2} }  \: are \: in \: AP

\rm :\longmapsto\:\dfrac{1}{ {b}^{2} } - \dfrac{1}{ {a}^{2} } = \dfrac{1}{ {c}^{2} } - \dfrac{1}{ {b}^{2} }

\rm :\longmapsto\:\dfrac{ {a}^{2} -  {b}^{2}  }{ {b}^{2}  {a}^{2} }  = \dfrac{ {b}^{2}  -  {c}^{2} }{ {c}^{2}  {b}^{2} }

\rm :\longmapsto\:\dfrac{(a - b)(a + b)}{ { {a} }^{2} } = \dfrac{(b - c)(b + c)}{ {c}^{2} }

\rm :\longmapsto\:\dfrac{ - (b - a)(a + b)}{ { {a} }^{2} } = \dfrac{ - (c - b)(b + c)}{ {c}^{2} }

\rm :\longmapsto\:\dfrac{a + b}{ {a}^{2} } = \dfrac{b + c}{ {c}^{2} }

\rm :\longmapsto\: {c}^{2}(a + b) =  {a}^{2}(b + c)

\rm :\longmapsto\: {c}^{2}a + b {c}^{2}  =  {a}^{2}b + c {a}^{2}

\rm :\longmapsto\: {c}^{2}a + b {c}^{2}   - {a}^{2}b - c {a}^{2}  = 0

\rm :\longmapsto\:ac(c - a) + b( {c}^{2} -  {a}^{2}) = 0

\rm :\longmapsto\:ac(c - a) + b( c + a)(c - a) = 0

\rm :\longmapsto\:(c - a)[ac + b( c + a)] = 0

\rm :\longmapsto\:(c - a)[ac + bc + ba] = 0

\bf\implies \:c = a -  -  - (2)

or

\rm :\longmapsto\:ac + bc + ab = 0

Also, from equation (1)

\rm :\longmapsto\:b - a = c - b

\rm :\longmapsto\:2b = a + c

\rm :\longmapsto\:2b = a + a

\rm :\longmapsto\:2b = 2a

\bf\implies \:b = a -  -  -  - (3)

From equation (2) and (3), we concluded that

\bf\implies \:a = b = c

  • Hence, option (1) is correct.

Similar questions