How to draw a concept map on Adaptation in plants
Answers
Answer:
the end of this section, you will have:
encouraged pupils to make deductions from their observations of living things (thinking and behaving scientifically);
used mind maps to record observations;
undertaken collaborative open-ended activities.
Introduction
One important way in which scientists work is to make logical deductions based on careful observations and data.
Too often, teachers prevent this by giving pupils ready-made facts to memorise (and which pupils often forget). So we need to support pupils as they work things out for themselves. This section looks at encouraging pupils to interrogate (ask questions about) their observations in order to make reasonable deductions for themselves.
To tackle this, we focus on how animals adapt for survival and movement.
1. Using mind maps to record observations
Ponds and pools of water support a complex balanced system of life. Observations of such an ecosystem can be organised on a mind map (see Key Resource: Using mind maps and brainstorming to explore ideas). Pupils can then add their ideas in a different colour.
In Activity 1 we encourage you to start an open-ended project – making a temporary pond at school. This can be populated by plants and animals borrowed from a local source. It is best if you involve your class in discussions about how you will collect pond life and safely keep it in the temporary ‘pond’. Pupils make accurate observations of life in the pond over a few weeks. By temporarily bringing nature close to the classroom, you have a resource for extending initial observations into deeper science thinking.
Teachers often feel insecure when doing more open-ended work like this. But it is more ‘learner centred’; it builds on pupils’ ideas and interests. You will probably be surprised by your pupils’ enthusiasm and the high quality of work produced. Remember that there are no ‘right answers’ to open-ended work like this. There is accurate observation and there is good, clear thinking that builds deductions that make sense.
Case Study 1 describes how a specific local environmental problem can be the basis for similar work. Do you have any similar problems in your area? This is a good opportunity to ask a local expert to visit your classroom to talk about the problem; remember to spend time preparing questions with your pupils before the visit (see Key Resource: Using the local community/environment as a resource).
Case Study 1: Observing an invasive plant
Semukanya teaches in the rural Gashora valley (Eastern Region) where there are weirs (barriers) to retain river water for farming. But there is a huge problem on the water. An alien plant – water hyacinth – is growing rampantly out of control and clogging the water.
Semukanya uses the problem as a basis for science work. He starts with the observation of actual samples (specimens) of the plant. These initial observations are recorded on a collective class mind map (see Key Resource: Using mind maps and brainstorming to explore ideas). The pupils discuss the mind map, which leads to further observations. Then, from what they have observed, pupils work to answer the core question: What factors and adaptations make this plant such a successful invader?
It is clear that the pupils are able to think scientifically, given the opportunity. Semukanya is surprised and pleased with their deductions. These are discussed and written up on the mind map in a second colour (see Resource 1: Concept map).