Math, asked by Sweetyspeaks, 3 months ago

how to evaluate
answer! please

Attachments:

Answers

Answered by saidasarikumar
1

Answer:

Step-by-step explanation:

X=9

Attachments:
Answered by Sen0rita
13

Given :

 \:

  •  \tt \:  \dfrac{x - 3}{2x - (x - 3)}  =  \dfrac{x - 2}{(2x + 3) - (x - 2)}

 \:

To Find :

 \:

  • Value of x.

 \:

Solution :

 \:

\tt:\implies \:  \dfrac{x - 3}{2x - (x - 3)}  =  \dfrac{x - 2}{(2x + 3) - (x - 2)}  \\  \\  \\ \tt:\implies \:  \frac{x - 3}{2x - x + 3}  =  \frac{x - 2}{2x + 3 - x + 2} \\  \\  \\  \tt:\implies \:  \frac{x - 3}{x + 3}  =  \frac{x - 2}{2x - x + 3 + 2}  \\  \\  \\ \tt:\implies \:  \frac{x - 3}{x + 3}  =  \frac{x - 2}{x + 5}  \\  \\  \\ \tt:\implies \: (x - 3)(x + 5) = (x + 3)(x - 2) \\  \\  \\ \tt:\implies \: \cancel {x}^{2}  - 3x + 5x - 15 = \cancel x {}^{2}  + 3x - 2x - 6 \\  \\  \\ \tt:\implies \: 5x - 3x - 15 = 3x - 2x - 6 \\  \\  \\ \tt:\implies \: 2x - 15 = x - 6 \\  \\  \\ \tt:\implies \: 2x - x = 15 - 6 \\  \\  \\ \tt:\implies \: x = \underline{\boxed{\tt\purple{9}}}\bigstar \\  \\  \\  \\ \tt\therefore{\underline{Hence, \: the \: value \: of \: x \: is \: \bold{9}}}.

Similar questions