How to explain gene frequency and changed in each generation but genotype frequency may be changed?
Answers
Answered by
0
Genetic variation describes naturally occurring genetic differences among individuals of the same species. This variation permits flexibility and survival of a population in the face of changing environmental circumstances. Consequently, genetic variation is often considered an advantage, as it is a form of preparation for the unexpected. But how does genetic variation increase or decrease? And what effect do fluctuations in genetic variation have on populations over time?
Mating patterns are important
When a population interbreeds, nonrandom mating can sometimes occur because one organism chooses to mate with another based on certain traits. In this case, individuals in the population make specific behavioral choices, and these choices shape the genetic combinations that appear in successive generations. When this happens, the mating patterns of that population are no longer random.
Nonrandom mating can occur in two forms, with different consequences. One form of nonrandom mating is inbreeding, which occurs when individuals with similar genotypes are more likely to mate with each other rather than with individuals with different genotypes. The second form of nonrandom mating is called outbreeding, wherein there is an increased probability that individuals with a particular genotype will mate with individuals of another particular genotype. Whereas inbreeding can lead to a reduction in genetic variation, outbreeding can lead to an increase.
Mating patterns are important
When a population interbreeds, nonrandom mating can sometimes occur because one organism chooses to mate with another based on certain traits. In this case, individuals in the population make specific behavioral choices, and these choices shape the genetic combinations that appear in successive generations. When this happens, the mating patterns of that population are no longer random.
Nonrandom mating can occur in two forms, with different consequences. One form of nonrandom mating is inbreeding, which occurs when individuals with similar genotypes are more likely to mate with each other rather than with individuals with different genotypes. The second form of nonrandom mating is called outbreeding, wherein there is an increased probability that individuals with a particular genotype will mate with individuals of another particular genotype. Whereas inbreeding can lead to a reduction in genetic variation, outbreeding can lead to an increase.
Similar questions