How to factorise 3 x cube + 5 x square - 11 X + 3
Answers
Step-by-step explanation:
Given -
- p(x) = 3x³ + 5x² - 11x + 3
To Find -
- Zeroes
Now,
3x³ + 5x² - 11x + 3
» 3x³ - 3x² + 8x² - 8x - 3x + 3
» 3x²(x - 1)+ 8x(x - 1)- 3(x - 1)
» (x - 1) (3x² + 8x - 3)
» (x - 1) (3x² - x + 9x - 3)
» (x - 1) [x(3x - 1) + 3(3x - 1)]
» (x - 1) [(x + 3)(3x - 1)]
» (x - 1)(x + 3)(3x - 1)
Zeroes are -
x - 1 = 0, x + 3 = 0, and 3x - 1 = 0
- x = 1, -3, 1/3
Verification :-
- α + β + γ = -b/a
» -3 + 1 + 1/3 = -5/3
» -9 + 3 + 1/3 = -5/3
» -5/3 = -5/3
LHS = RHS
And
- αβ + βγ + γα = c/a
» -3×1 + 1×1/3 + 1/3×-3 = -11/3
» -3 + 1/3 - 1 = -11/3
» -9 + 1 - 3/3 = -11/3
» -11/3 = -11/3
LHS = RHS
And
- αβγ = -d/a
» -3 × 1 × 1/3 = -3/3
» -1 = -1
LHS = RHS
Hence,
Verified..
- p(x) = 3x³ + 5x² - 11x + 3
- zeroes
3x³ + 5x² - 11x + 3
3x³ - 3x² + 8x² - 11x + 3
3x²(x - 1) + 8x(x - 1) - 3(x - 1)
(x - 1)(3x² + 8x - 3)
(x - 1)(3x² - x + 9x - 3)
(x - 1)[x(3x - 1) + 3(3x - 1)]
(x - 1)[(x + 3)(3x - 1)]
(x - 1)(x + 3)(3x - 1)
x - = 0
x = 1
x + 3 = 0
x = -3
3x - 1 = 0
3x = 1
x = 1/3