CBSE BOARD XII, asked by madhu637257, 10 months ago

how to find matrics B....plz help me​

Attachments:

Answers

Answered by Anonymous
2

Explanation:

let B = b1       b2

            b3      b4

Now,

2    5                 b1          b2                       17           -1

                                                       =    

-3     7                b3         b4                        47          13

[row  x  column]

2 x b1   +  5 x b3    = 17    ...... (i)

2 x b2   +  5 x b4    =  -1  ...... (ii)    [please recheck whether the RHS is 1 or -1]

similarly,

-3 x b1   +   7 x b3   = 47     ..... (iii)

-3 x b2   +   7 x b4   = 13      ...... (iv)        

take (i) & (ii)

[either use substitution or elimination method which we have learned in lower classes. Here let us use elimination]

To eliminate b1 , multiply eq. (i) by 3   && eq. (ii) by 2

(i)==========  6 b1   + 15 b3  =  51

(ii)=========   -6 b1  +  14 b3 =  94

add these 2 ens.

                              29 b3  == 145

b3 == 5

sub this value in (i) or (ii)

(i)=== 2 b1 + 5 b3 = 17

2 b1 + 5*5 = 17

2 b1 = 17 - 25 = -8

b1 = -4

similarly take (ii) & (iv) , multiply (ii) by 3 && (iv) by 2

COULD U PLS CHECK the RHS.. FIRST ROW second term has to be '1' , i guess. i am doing it with '1' from here on..

6 b2 + 15 b4 =  3

-6 b2 + 14 b4 = 26

adding both :

29 b4 = 29

b4 = 1

(ii)=== 2 b2 + 5 b4 = 1

        2 b2 =1 -5 = -4

b2 = -2

B =  -4             -2

        5               1

Answered by priyam143
0
Multiply each element of first Matrix by B

Make equations and solve

Eg:- 2B =17
B= 17/2

5B= -1
B= -1/5

-3B= 47
B= -47/3

7B= 13
B=13/7

The resulting matrix B will me:-

[ 17/2 -1/5

-47/3 13/7 ]
Similar questions