How to find particular integral for y''+3y'+2y=e^e^x
Answers
Answered by
0
′′+3y′+2y=eexy″+3y′+2y=eex
Complimentary function
Auxiliaryequationr2+3r+2=0⟹(r+2)(r+1)=0⟹r=−2,−1Auxiliaryequationr2+3r+2=0⟹(r+2)(r+1)=0⟹r=−2,−1
yc=Ae−x+Be−2xyc=Ae−x+Be−2x
Particular Integral
(D+1)(D+2)y=eex;Let(D+2)y=z(D+1)(D+2)y=eex;Let(D+2)y=z
(D+1)z=eex(D+1)z=eex
dzdx+y=eexdzdx+y=eex
I.F.=e∫dx=exI.F.=e∫dx=ex
Multiplying by I.F. exz=∫exeexdxexz=∫exeexdx
Put ex=tex=t ; exdx=dtexdx=dt
exz=∫etdt=et=eexexz=∫etdt=et=eex
z=e−xeexz=e−xeex
(D+2)y=e−xeex(D+2)y=e−xeex
dydx+2y=e−xeexdydx+2y=e−xeex
I.F=e∫2dx=e2xI.F=e∫2dx=e2x
Multiplying by I.F. and integrating
e2xy=∫e2xe−xeexdx=∫exeexdx=eexe2xy=∫e2xe−xeexdx=∫exeexdx=eexas above.
So yp=e−2xeexyp=e−2xeex
The total solution is
y=Ae−x+Be−2x+e−2xeexy=Ae−x+Be−2x+e−2xeex
Complimentary function
Auxiliaryequationr2+3r+2=0⟹(r+2)(r+1)=0⟹r=−2,−1Auxiliaryequationr2+3r+2=0⟹(r+2)(r+1)=0⟹r=−2,−1
yc=Ae−x+Be−2xyc=Ae−x+Be−2x
Particular Integral
(D+1)(D+2)y=eex;Let(D+2)y=z(D+1)(D+2)y=eex;Let(D+2)y=z
(D+1)z=eex(D+1)z=eex
dzdx+y=eexdzdx+y=eex
I.F.=e∫dx=exI.F.=e∫dx=ex
Multiplying by I.F. exz=∫exeexdxexz=∫exeexdx
Put ex=tex=t ; exdx=dtexdx=dt
exz=∫etdt=et=eexexz=∫etdt=et=eex
z=e−xeexz=e−xeex
(D+2)y=e−xeex(D+2)y=e−xeex
dydx+2y=e−xeexdydx+2y=e−xeex
I.F=e∫2dx=e2xI.F=e∫2dx=e2x
Multiplying by I.F. and integrating
e2xy=∫e2xe−xeexdx=∫exeexdx=eexe2xy=∫e2xe−xeexdx=∫exeexdx=eexas above.
So yp=e−2xeexyp=e−2xeex
The total solution is
y=Ae−x+Be−2x+e−2xeexy=Ae−x+Be−2x+e−2xeex
Similar questions
History,
7 months ago
Computer Science,
7 months ago
Physics,
7 months ago
Math,
1 year ago
Math,
1 year ago