How to find positive square root of surds
Answers
Answered by
2
Answer:
14 + 6√5
14 + 6√5= 9+ 5 + 6√5 ( splitting 14 as 9+5)
14 + 6√5= 9+ 5 + 6√5 ( splitting 14 as 9+5)= 3^2 + √5^2+ 6√5
14 + 6√5= 9+ 5 + 6√5 ( splitting 14 as 9+5)= 3^2 + √5^2+ 6√5= 3^2 + 6√5 + √5^2
14 + 6√5= 9+ 5 + 6√5 ( splitting 14 as 9+5)= 3^2 + √5^2+ 6√5= 3^2 + 6√5 + √5^2= 3^2+ 2*3*√5+ √5^2
14 + 6√5= 9+ 5 + 6√5 ( splitting 14 as 9+5)= 3^2 + √5^2+ 6√5= 3^2 + 6√5 + √5^2= 3^2+ 2*3*√5+ √5^2= a^2 + 2ab+ b^2 = (a+b)^2
14 + 6√5= 9+ 5 + 6√5 ( splitting 14 as 9+5)= 3^2 + √5^2+ 6√5= 3^2 + 6√5 + √5^2= 3^2+ 2*3*√5+ √5^2= a^2 + 2ab+ b^2 = (a+b)^2Hence
14 + 6√5= 9+ 5 + 6√5 ( splitting 14 as 9+5)= 3^2 + √5^2+ 6√5= 3^2 + 6√5 + √5^2= 3^2+ 2*3*√5+ √5^2= a^2 + 2ab+ b^2 = (a+b)^2Hence14+6√5 = ( 3+ √5)^2
14 + 6√5= 9+ 5 + 6√5 ( splitting 14 as 9+5)= 3^2 + √5^2+ 6√5= 3^2 + 6√5 + √5^2= 3^2+ 2*3*√5+ √5^2= a^2 + 2ab+ b^2 = (a+b)^2Hence14+6√5 = ( 3+ √5)^2Square root of 14 + 6√5 = square root of (3+√5)^2
14 + 6√5= 9+ 5 + 6√5 ( splitting 14 as 9+5)= 3^2 + √5^2+ 6√5= 3^2 + 6√5 + √5^2= 3^2+ 2*3*√5+ √5^2= a^2 + 2ab+ b^2 = (a+b)^2Hence14+6√5 = ( 3+ √5)^2Square root of 14 + 6√5 = square root of (3+√5)^2Square root of 14 + 6√ 5 = 3 + √5
14 + 6√5= 9+ 5 + 6√5 ( splitting 14 as 9+5)= 3^2 + √5^2+ 6√5= 3^2 + 6√5 + √5^2= 3^2+ 2*3*√5+ √5^2= a^2 + 2ab+ b^2 = (a+b)^2Hence14+6√5 = ( 3+ √5)^2Square root of 14 + 6√5 = square root of (3+√5)^2Square root of 14 + 6√ 5 = 3 + √5Ans : 3+√5..
good morning dude have a nice day..
☺️Mark my answer as BRAINLIEST ☺️
Similar questions