how to find question 20
Attachments:
Answers
Answered by
4
Theta is written as A.
Answer:
tanA. secA + sec^2 A = 1 / ( 1 - sinA )
Step-by-step explanation:
From the properties of trigonometric ratios :
- tanA = sinA / cosA ( A ≠ π / 2 )
- secA = 1 / cosA ( A ≠ π / 2 )
- 1 - sin^2A = cos^2 A
= > ( tanA. secA ) + sec^2A
= > { ( sinA / cosA ) x 1 / cosA } + 1 / cos^2 A
= > ( sinA / cos^2 A ) + 1 / cos^2 A
= > 1 / cos^2 A x ( sinA + 1 )
= > 1 / ( 1 - sin^2 A ) x ( sinA + 1 )
= > 1 / { ( 1 + sinA )( 1 - sinA ) } x ( sinA + 1 ) { 1 - sin^2 A = ( 1 + sinA )( 1 - sinA ), using a^2 - b^2 = ( a + b )( a - b ) }
= > 1 / ( 1 - sinA )
Hence, proved.
Similar questions