Math, asked by jackiechan125, 9 months ago

How to find the area of the triangle whose vertices are (0,0) , (3,0), (0,2)

Answers

Answered by BrainlyConqueror0901
14

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Area\:of\:triangle=3\:units^{2}}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt: \implies vertices \: of \: triangle = (0,0),(3,0)\:and\:(0,2) \\  \\  \red{\underline \bold{To \: Find :}} \\  \tt:  \implies Area \: of \: triangle =?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies Area \: of \: triangle =  \frac{1}{2} \bigg[x_{1}( y_{2} -  y_{3}) +  x_{2}( y_{3} -  y_{1}) +  x_{3}( y_{1} -  y_{2})\bigg] \\  \\ \tt:  \implies Area \: of \: triangle =  \frac{1}{2} \bigg[0(0 - 2) + 3(2 - 0) + 0(0 - 0)\bigg] \\  \\ \tt:  \implies Area \: of \: triangle = \frac{1}{2} (0 + 3 \times 2 + 0) \\  \\ \tt:  \implies Area \: of \: triangle = \frac{1}{2} (6) \\  \\  \green{\tt:  \implies Area \: of \: triangle =3 \: units^{2}  }\\\\ \blue{\boxed{ \bold{Some \: related \: formula}}} \\  \orange{ \tt \circ \:  \: Distance \: formula =  \sqrt{ (x_{2} -  x_{1})^{2} + (y_{2} -  y_{1})^{2} } } \\  \\  \orange{ \tt \circ \:  \: Mid \: point \: formula =  \frac{ x_{1} +  x_{2} }{2} .\frac{ y_{1} +  y_{2} }{2}} \\  \\ \orange{ \tt \circ \:  \:Section \: formula =  \frac{ mx_{2} +  nx_{1} }{m + n} }

Similar questions