Math, asked by Emily5845, 1 year ago

How to find the area of trapezium when the length of parallel sides and non parallel sides are given?

Answers

Answered by Samu731
3

Here we will learn how to use the formula to find the area of trapezium.

Area of trapezium ABCD = Area of ∆ ABD + Area of ∆ CBD 

= 1/2 × a × h + 1/2 × b × h

= 1/2 × h × (a + b) 

= 1/2 (sum of parallel sides) × (perpendicular distance between them) 

Worked-out examples on area of trapezium

1. The length of the parallel sides of a trapezium are in the rat: 3 : 2 and the distance between them is 10 cm. If the area of trapezium is 325 cm², find the length of the parallel sides. 

Solution: 

Let the common ration be x, 

Then the two parallel sides are 3x, 2x 

Distance between them = 10 cm

Area of trapezium = 325 cm²

Area of trapezium = 1/2 (p₁ + p₂) h

325 = 1/2 (3x + 2x) 10

⇒ 325 = 5x × 5 

⇒ 325 = 25x

⇒ x = 325/25

Therefore, 3x = 3 × 13 = 39 and 2x = 2 × 13 = 26 

Therefore, the length of parallel sides area are 26 cm and 39 cm. 

 

2. ABCD is a trapezium in which AB ∥ CD, AD ⊥ DC, AB = 20 cm, BC = 13 cm and DC = 25 cm. Find the area of the trapezium. 

8Save

Solution: 

From B draw BP perpendicular DC 

Therefore, AB = DP = 20 cm 

So, PC = DC - DP 

= (25 - 20) cm 

= 5 cm 

Now, area of trapezium ABCD = Area of rectangle ABPD + Area of △ BPC 

△BPC is right angled at ∠BPC 

Therefore, using Pythagoras theorem, 

      BC² = BP² + PC²

     13² = BP² + 5²

⇒ 169 = BP² + 25

⇒ 169 - 25 = BP² 

⇒ 144 = BP²

⇒ BP = 12 

Now, area of trapezium ABCD = Area of rectangle ABPD + Area of ∆BPC 

                                                = AB × BP + 1/2 × PC × BP 

                                                = 20 × 12 + 1/2 × 5 × 12 

                                                = 240 + 30 

                                                = 270 cm²

3. Find the area of a trapezium whose parallel sides are AB = 12 cm, CD = 36 cm and the non-parallel sides are BC = 15 cm and AG = 15 cm. 

8Save

Solution: 

In trapezium ABCD, draw CE ∥ DA. 

Now CE = 15 cm 

Since, DC = 12 cm so, AE = 12 cm 

Also, EB = AB - AE = 36 - 12 = 24 cm 

Now, in ∆ EBC 

S = (15 + 15 + 24)/2 

= 54/2 

= 27 

= √(27 × 12 × 12 × 3) 

= √(3 × 3 × 3 × 3 × 2 × 2 × 2 × 2 × 3 × 3) 

= 3 × 3 × 3 × 2 × 2

= 108 cm²

Draw CP ⊥ EB. 

Area of ∆EBC = 1/2 × EB × CP 

108 = 1/2 × 24 × CP

108/12 = CP 

⇒ CP = 9 cm Therefore, h = 9 cm

Now, area of triangle = √(s(s - a) (s - b) (s - c)) 

= √(27 (27 - 15) (27 - 15 ) (27 - 24)) 

Now, area of trapezium = 1/2(p₁ + p₂) × h

= 1/2 × 48 × 9

= 216 cm²

4. The area of a trapezium is 165 cm² and its height is 10 cm. If one of the parallel sides is double of the other, find the two parallel sides. 

Solution: 

Let one side of trapezium is x, then other side parallel to it = 2x 

Area of trapezium = 165 cm²

Height of trapezium = 10 cm

Now, area of trapezium = 1/2 (p₁ + p₂) × h

⇒ 165 = 1/2(x₁ + 2x) × 10 

⇒ 165 = 3x × 5 

⇒ 165 = 15x

⇒ x = 165/15 

⇒ x = 11

Therefore, 2x = 2 × 11 = 22

Therefore, the two parallel sides are of length 11 cm and 22 cm. 

These are the above examples explained step by step to calculate the area of trapezium.

Answered by Anonymous
7

Answer:

Trapezoid

Solve for area

A=a+b

2h

a Base

Enter value

b Base

Enter value

h Height

Enter value

Step-by-step explanation:

hope help you xd brainlist plz

dear jaimm ✌ ✌

Similar questions