Math, asked by mermax, 1 year ago

how to find the value of log 625/ log √5​

Answers

Answered by Hansika4871
0

Given:

A logarithmic value log(625)/log(√5).

To Find:

The simplified value of the above form is?

Solution:

The given problem can be solved using the formulae of logarithms.

1. The formulae used to solve the given problem are:

  • log(a^m) = m(loga)
  • log(\frac{a^b}{c^d}) = \frac{b}{d}(log(\frac{a}{c}) )
  • \frac{loga}{loga} = 1

2. Using the above formulae the problem can be simplified,

=> (\frac{log625}{log\sqrt{5} } ) = (\frac{log5^4}{log(5^{1/2})} ),

=> \frac{4log5}{\frac{1}{2}log5 },

=> \frac{4}{\frac{1}{2} },

=> 4*2 = 8.

Therefore, the value of log(625)/log(√5) is 8.

Answered by Syamkumarr
2

Answer:

The value of ㏒ 625/㏒\sqrt{5} = 8

Step-by-step explanation:      

Given problem ㏒ 625/ ㏒ \sqrt{5}  

here  625 can be written as 5⁴

          \sqrt{5}   can be written as 5^{ \frac{1}{2} }  

⇒ ㏒ 625/ ㏒ \sqrt{5}  =  ㏒ 5⁴/ ㏒ 5 ^{ \frac{1}{2} }  

[we know that ㏒ a^{b}  = b ㏒ a ]

⇒ ㏒ 5⁴/ ㏒ 5^{ \frac{1}{2} }  =  4 ㏒ 5/ \frac{1}{2} ㏒ 5

                        = \frac{4}{ \frac{1}{2} }   =  4 ×2 = 8

⇒ ㏒ 625/㏒\sqrt{5} = 8

Similar questions