how to find the value of sin 37°?
Answers
Answered by
117
hello friend
❣️❣️❣️❣️❣️❣️❣️❣️❣️❣️❣️❣️❣️
a right angled triangle with sides as 3,4,5 or 6,8,10 the angles other than the right angle are 37° and 53°
so
❣️❣️❣️❣️❣️❣️❣️❣️❣️
❣️sin37° = 3/5 = cos53°❣️
❣️❣️❣️❣️❣️❣️❣️❣️❣️
have a great day
❣️❣️❣️❣️❣️❣️❣️❣️❣️❣️❣️❣️❣️
a right angled triangle with sides as 3,4,5 or 6,8,10 the angles other than the right angle are 37° and 53°
so
❣️❣️❣️❣️❣️❣️❣️❣️❣️
❣️sin37° = 3/5 = cos53°❣️
❣️❣️❣️❣️❣️❣️❣️❣️❣️
have a great day
Answered by
17
The value of sin 37° is 3/5
Step-by-step explanation:
As we know,
Sin = Perpendicular/Hypotenuse
and Sin 37° = Cos 53°
Since we know,
37° < 90° which is an acute angle.
In a right-angled triangle ABC,
∠B = 90°, ∠A = 37°
∠A + ∠B + ∠C = 180°
∠C = 180° - (90° + 37°)
∠C = 180° - 127° = 53°
Let the perpendicular be 3, Base be 4
Using Pythagoras theorem,
P^2 + B^2 = H^2
3^2 + 4^2 = H^2
H^2 = 9 + 16
H =
H = 5
Thus, sin 37° = P/H
= 3/5
Learn more:
If Sin A - cos A=1,find the value of cos A+ sin A
brainly.in/question/11949650
Similar questions