Math, asked by Goutam9614, 1 year ago

how to find the value of sin 37°?

Answers

Answered by Ajay1291
117
hello friend

❣️❣️❣️❣️❣️❣️❣️❣️❣️❣️❣️❣️❣️

a right angled triangle with sides as 3,4,5 or 6,8,10 the angles other than the right angle are 37° and 53° 

so
❣️❣️❣️❣️❣️❣️❣️❣️❣️
❣️sin37° = 3/5 = cos53°❣️
❣️❣️❣️❣️❣️❣️❣️❣️❣️


have a great day
Answered by JackelineCasarez
17

The value of sin 37° is 3/5

Step-by-step explanation:

As we know,

Sin = Perpendicular/Hypotenuse

and Sin 37° = Cos 53°

Since we know,

37°  < 90° which is an acute angle.

In a right-angled triangle ABC,

∠B = 90°, ∠A = 37°

∠A + ∠B + ∠C = 180°

∠C = 180° - (90° + 37°)

∠C = 180° - 127° = 53°

Let the perpendicular be 3, Base be 4

Using Pythagoras theorem,

P^2 + B^2 = H^2

3^2 + 4^2 = H^2

H^2 = 9 + 16

H = \sqrt{25}

H = 5

Thus, sin 37° = P/H

= 3/5

Learn more:

If Sin A - cos A=1,find the value of cos A+ sin A

brainly.in/question/11949650

Similar questions