How to find two highly correlated values in r
Answers
Answer:
Step-by-step explanation:
vector of indices denoting the columns to remove (when names = TRUE) otherwise a vector of column names. If no correlations meet the criteria, integer(0) is returned.
Author(s)
Original R code by Dong Li, modified by Max Kuhn
See Also
leaps, genetic, anneal, findLinearCombos
R1 <- structure(c(1, 0.86, 0.56, 0.32, 0.85, 0.86, 1, 0.01, 0.74, 0.32,
0.56, 0.01, 1, 0.65, 0.91, 0.32, 0.74, 0.65, 1, 0.36,
0.85, 0.32, 0.91, 0.36, 1),
.Dim = c(5L, 5L))
colnames(R1) <- rownames(R1) <- paste0("x", 1:ncol(R1))
R1
findCorrelation(R1, cutoff = .6, exact = FALSE)
findCorrelation(R1, cutoff = .6, exact = TRUE)
findCorrelation(R1, cutoff = .6, exact = TRUE, names = FALSE)
R2 <- diag(rep(1, 5))
R2[2, 3] <- R2[3, 2] <- .7
R2[5, 3] <- R2[3, 5] <- -.7
R2[4, 1] <- R2[1, 4] <- -.67
corrDF <- expand.grid(row = 1:5, col = 1:5)
corrDF$correlation <- as.vector(R2)
levelplot(correlation ~ row + col, corrDF)
findCorrelation(R2, cutoff = .65, verbose = TRUE)
findCorrelation(R2, cutoff = .99, verbose
Hope it helps you....