how to fractorise using factor theorem??
Answers
Answered by
1
How do l factorise x3−3x2−9x−5x3−3x2−9x−5 by using factor theorem?
answer :
notice, x=−1x=−1 satisfies the cubic equation: x3−3x2−9x−5=0x3−3x2−9x−5=0 hence from factor theorem, x+1x+1 is a factor of x3−3x2−9x−5x3−3x2−9x−5
∴x3−3x2−9x−5∴x3−3x2−9x−5
=x2(x+1)−4x(x+1)−5(x+1)=x2(x+1)−4x(x+1)−5(x+1)
=(x+1)(x2−4x−5)=(x+1)(x2−4x−5)
=(x+1)(x2−5x+x−5)=(x+1)(x2−5x⏟+x−5⏟)
=(x+1)(x(x−5)+(x−5))=(x+1)(x(x−5)+(x−5))
=(x+1)(x−5)(x+1)=(x+1)(x−5)(x+1)
=(x−5)(x+1)2
answer :
notice, x=−1x=−1 satisfies the cubic equation: x3−3x2−9x−5=0x3−3x2−9x−5=0 hence from factor theorem, x+1x+1 is a factor of x3−3x2−9x−5x3−3x2−9x−5
∴x3−3x2−9x−5∴x3−3x2−9x−5
=x2(x+1)−4x(x+1)−5(x+1)=x2(x+1)−4x(x+1)−5(x+1)
=(x+1)(x2−4x−5)=(x+1)(x2−4x−5)
=(x+1)(x2−5x+x−5)=(x+1)(x2−5x⏟+x−5⏟)
=(x+1)(x(x−5)+(x−5))=(x+1)(x(x−5)+(x−5))
=(x+1)(x−5)(x+1)=(x+1)(x−5)(x+1)
=(x−5)(x+1)2
Anonymous:
Thnku bhai Apne block krwaa diya ab Sara tension he khatam hy
Similar questions
Accountancy,
8 months ago
Social Sciences,
8 months ago
History,
1 year ago
Chemistry,
1 year ago
Math,
1 year ago
English,
1 year ago
English,
1 year ago