Math, asked by madhavrastogi22, 1 day ago

how to get answer!??????​

Attachments:

Answers

Answered by suhail2070
0

Answer:

( 1 +  \frac{ {z}^{2} }{ {c}^{2} } )

OPTION A IS CORRECT.

Step-by-step explanation:

 \frac{x}{a}  =  \sec( \alpha )  \cos( \beta )  \\  \\  \frac{y}{b}  =  \sec( \alpha )  \sin( \beta )  \\  \\   \frac{ {x}^{2} }{ {a}^{2} }  +  \frac{ {y}^{2} }{ {b}^{2} }  =  { \sec( \alpha ) }^{2} ( { \sin( \beta ) }^{2}  +  { \cos( \beta )) }^{2}  \\  \\   \frac{ {x}^{2} }{ {a}^{2} }  +  \frac{ {y}^{2} }{ {b}^{2} }   =  { \sec( \alpha ) }^{2}  \\  \\  = 1  + { \tan( \alpha) }^{2}  \\  \\  =( 1 +  \frac{ {z}^{2} }{ {c}^{2} } ) \\  \\ then \:  \:  \:  \:  \:  \frac{ {x}^{2} }{ {a}^{2} }  +  \frac{ {y}^{2} }{ {b}^{2} }   =( 1 +  \frac{ {z}^{2} }{ {c}^{2} } ).

Answered by maheshtalpada412
3

Step-by-step explanation:

Solution :-

We have,

 \text{\( \rm \sec \theta \cos \phi=\dfrac{x}{a} \) \( \ldots \) (i)}

 \text{ \( \rm \sec \theta \sin \phi=\dfrac{y}{b} \ldots \) (ii)}

and

 \text{\( \rm \tan \theta=\dfrac{z}{c} \) ... (iii)}

Squaring and adding (i) and (ii), we get

 \\ \rm \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\sec ^{2} \theta \cos ^{2} \phi+\sec ^{2} \theta \sin ^{2} \phi

 \rm =\sec ^{2} \theta\left(\cos ^{2} \phi+\sin ^{2} \phi\right)=\sec ^{2} \theta \quad\left[\because \cos ^{2} A+\sin ^{2} A=1\right]

 \text{ \( \displaystyle \rm =\left(1+\tan ^{2} \theta \right )=\left(1+\frac{z^{2}}{c^{2}}\right) \quad \) [From (iii)]}

 \\  \rm \therefore \quad\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}\right)=\left(1+\frac{z^{2}}{c^{2}}\right)

 \\  \boxed{\color{violet} \rm \therefore\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}\right)=\left(1+\frac{z^{2}}{c^{2}}\right) }

Therefore Correct option is (A).

Similar questions