Math, asked by asmi3877, 1 year ago

How to integrate 1√x2−4x+3dx?

Answers

Answered by CEOEkanshNimbalkar
2
Answer:  - \frac{3x {}^{2} }{2} + 3x + C

Step by step explanation :

∫ \sqrt{x {}^{2} } - 4x + 3dx

Any expression multiplied by 1 remains the same

 = > ∫ \sqrt{x {}^{2} } - 4x + 3dx

Reduce the index of the radical and exponent with 2

 = > ∫x - 4x + 3 \: dx

Collect the like terms by subtracting their coefficients

 = > ∫ - 3x + 3dx

Use property of integral

∫f(x) + - g(x)dx = ∫f(x)dx + - ∫g(x)dx

 = > - ∫3xdx + ∫3dx

Calculate the indefinite integral.

Use property of integral

∫a \times f(x)dx = a \times ∫f(x)dx

 = > - 3 \times ∫x \: dx + ∫3 \: dx

Using ∫x \: dx = \frac{x {}^{2} }{2} , solve the integral.

 = > - 3 \times \frac{x {}^{2} }{2} + ∫3 \: dx

Calculate the product

 = > - \frac{3x {}^{2} }{2} + ∫3 \: dx

Using ∫ a \: dx = a \times x, solve the integral

 = > - \frac{3x {}^{2} }{2} + 3x

Add the constant of integration

 = > - \frac{3x {}^{2} }{2} + 3x + \: C

CEOEkanshNimbalkar: Thanks!
Similar questions