Math, asked by Sadattached, 2 months ago

How to integrate
3x^2/(1+x^3)

Answers

Answered by assingh
41

Topic :-

Indefinite Integration

To Solve :-

\displaystyle \int\dfrac{3x^2}{1+x^3}\:dx

Solution :-

\displaystyle \int\dfrac{3x^2}{1+x^3}\:dx

Substitute\:t=1+x^3,

dt=3x^2\:dx

\displaystyle \int\dfrac{1}{t}\:dt

\ln t+C

where\:C\:is\:constant\:of\:integration.

\left(\because \displaystyle \int\dfrac{1}{z}\:dz=\ln z+C\right)

Put\:back\:value\:of\:'t',

\ln (1+x^3)+C

Answer :-

\underline{\boxed{\displaystyle \int\dfrac{3x^2}{1+x^3}\:dx=ln(1+x^3)+C}}

Additional Formulae :-

\displaystyle\int dx=x+C

\displaystyle\int x^n\:dx=\dfrac{x^{n+1}}{n+1}+C

\displaystyle\int e^x\:dx=e^x+C

\displaystyle\int a^x\:dx=\dfrac{a^x}{\ln a}+C

\displaystyle\int\sin x\:dx=-\cos x+C

\displaystyle\int\cos x\:dx=\sin x+C

\displaystyle\int\tan x\:dx=\ln |\sec x|+C

\displaystyle\int\csc x\:dx=\ln|\csc x-\cot x| +C

\displaystyle\int\sec x\:dx=\ln|\sec x+\tan x| +C

\displaystyle\int\cot x\:dx=\ln |\sin x|+C

\displaystyle\int\sec^2 x\:dx=\tan x+C

\displaystyle\int\csc^2 x\:dx=-\cot x+C

\displaystyle\int\sec x\cdot \tan x\:dx=\sec x+C

\displaystyle\int\csc x\cdot \cot x\:dx=-\csc x+C


Asterinn: Nice!
Similar questions