How to integrate a/1-a?
Answers
Answered by
1
let 1-a=t or a=1-t
now dt=-da
using this integration= integr(1-t/t) -dt
= integration (1/t-1)(-dt)
-(logt-t)=t-logt
hence(1-a)-log(1-a)
now dt=-da
using this integration= integr(1-t/t) -dt
= integration (1/t-1)(-dt)
-(logt-t)=t-logt
hence(1-a)-log(1-a)
Answered by
1
a
integral -------- da Choose 1 - a = x Differentiate: - d a = d x
1 - a
Integral (1 - x)
--------- (-dx)
x
Integral of [ - 1/x dx + 1 dx ]
- Ln x + x + C where C is the integration constant
- Ln (1-a) + 1 - a + C
-Ln (1 - a) - a + C
integral -------- da Choose 1 - a = x Differentiate: - d a = d x
1 - a
Integral (1 - x)
--------- (-dx)
x
Integral of [ - 1/x dx + 1 dx ]
- Ln x + x + C where C is the integration constant
- Ln (1-a) + 1 - a + C
-Ln (1 - a) - a + C
Similar questions