Math, asked by rajesharulrathna, 11 months ago

how to integrate log(sec x)

Answers

Answered by Anonymous
2

Answer:

\large\boxed{\sf{ x log( \sec(x) )  - ( \frac{ {x}^{3} }{3}    +   \frac{ {x}^{5} }{15}    +  \frac{ 2{x}^{7} }{105}   +  ..........) + c}}

Step-by-step explanation:

\displaystyle \int   log( \sec(x) )  dx\\  \\  =  log( \sec(x) ) \displaystyle \int  dx - \displaystyle \int  ( \frac{d}{dx} log( \sec(x) ) ) \displaystyle \int  dx)dx \\  \\  = x log( \sec(x) )  - \displaystyle \int x \tan(x) dx \\  \\  = x log( \sec(x) )  - x\displaystyle \int  (x +  \frac{ {x}^{3} }{3}  +  \frac{2 {x}^{5} }{15}  + ........)dx \\  \\  = x log( \sec(x) )  - \displaystyle \int  ( {x}^{2}  +  \frac{ {x}^{4} }{3}  +  \frac{2 {x}^{6} }{15}  + .........)dx \\  \\  = x log( \sec(x) )  - ( \frac{ {x}^{3} }{3}    +   \frac{ {x}^{5} }{15}    +  \frac{ 2{x}^{7} }{105}   +  ..........) + c

We have used the integration by product rule and the expansion of tan x.

Answered by sweetyheree
0

Answer:

see the attachment above

Step-by-step explanation:

answer turn out to be zero

hence this cant be integrated

Attachments:
Similar questions