how to integrate log10x
Answers
Answered by
1
I=∫log|10x|dxI=∫log|10x|dx
I=110∫10log|10x|dxI=110∫10log|10x|dx
Substitute:
10x=t10x=t
⟹10dx=dt⟹10dx=dt
⟹I=110∫log|t|dt⟹I=110∫log|t|dt
Apply by part integration formula.
⟹I=110(log|t|∫1dt−∫(ddt(log|t|)⋅∫1dt)dt)⟹I=110(log|t|∫1dt−∫(ddt(log|t|)⋅∫1dt)dt)
⟹I=110(tlog|t|−∫(1t⋅t)dt)⟹I=110(tlog|t|−∫(1t⋅t)dt)
⟹I=110(tlog|t|−∫1dt)⟹I=110(tlog|t|−∫1dt)
⟹I=110(tlog|t|−t)+c⟹I=110(tlog|t|−t)+c
Converting back to original variable xx
⟹I=110(10xlog|10x|−10x)+C⟹I=110(10xlog|10x|−10x)+C
⟹I=xlog|10x|−x+C⟹I=xlog|10x|−x+C
⌣¨
Plzzzzz mark me brainlist
I=110∫10log|10x|dxI=110∫10log|10x|dx
Substitute:
10x=t10x=t
⟹10dx=dt⟹10dx=dt
⟹I=110∫log|t|dt⟹I=110∫log|t|dt
Apply by part integration formula.
⟹I=110(log|t|∫1dt−∫(ddt(log|t|)⋅∫1dt)dt)⟹I=110(log|t|∫1dt−∫(ddt(log|t|)⋅∫1dt)dt)
⟹I=110(tlog|t|−∫(1t⋅t)dt)⟹I=110(tlog|t|−∫(1t⋅t)dt)
⟹I=110(tlog|t|−∫1dt)⟹I=110(tlog|t|−∫1dt)
⟹I=110(tlog|t|−t)+c⟹I=110(tlog|t|−t)+c
Converting back to original variable xx
⟹I=110(10xlog|10x|−10x)+C⟹I=110(10xlog|10x|−10x)+C
⟹I=xlog|10x|−x+C⟹I=xlog|10x|−x+C
⌣¨
Plzzzzz mark me brainlist
Similar questions