How to integrate ∫▒〖(sinx)〗^4 .〖(cosx)〗^4.dx?
Answers
Answered by
1
The integral:
there could be other ways. this is one.
========================
Another way:
we know that Sin 3x = 3 Sin x - 4 SIn³ x
=> Sin x Sin 3x = 3 Sin²x - 4 Sin⁴ x
=> 1/2 (Cos 2x - Cos 4x) = 3/2 (1-Cos2x) - 4 Sin⁴ x
=> Sin⁴ x = 1/8 [ 3 - 3 Cos 2x + Cos 4x - Cos 2x ]
=> Sin⁴ 2x = 1/8 [ 3 - 4 Cos 4x + Cos 8x ]
This is simpler, if you remember formula for sin 3x or sin 4x.
there could be other ways. this is one.
========================
Another way:
we know that Sin 3x = 3 Sin x - 4 SIn³ x
=> Sin x Sin 3x = 3 Sin²x - 4 Sin⁴ x
=> 1/2 (Cos 2x - Cos 4x) = 3/2 (1-Cos2x) - 4 Sin⁴ x
=> Sin⁴ x = 1/8 [ 3 - 3 Cos 2x + Cos 4x - Cos 2x ]
=> Sin⁴ 2x = 1/8 [ 3 - 4 Cos 4x + Cos 8x ]
This is simpler, if you remember formula for sin 3x or sin 4x.
Similar questions