Math, asked by arthchandra14, 1 year ago

how to integrate this?​

Attachments:

Answers

Answered by shadowsabers03
0

Given to find,

\displaystyle\int\limits_0^{\frac{3}{2}}x\sin (\pi x)\ dx

Recall the product rule of differentiation.

\displaystyle\int uv'=uv-\int u'v

Thus, let,

\begin {aligned}&u=x\\\\\implies\ \ &u'=1\end {aligned}

and,

\displaystyle\begin {aligned}&v'=\sin (\pi x)\\\\\\\implies\ \ &v=\int\sin (\pi x) dx\\\\\\&v=\dfrac {1}{\pi}\int\sin (\pi x)\ d(\pi x)\\\\\\&v=-\dfrac {\cos (\pi x)}{\pi}\end{aligned}

Then,

\displaystyle\int\limits_0^{\frac{3}{2}}x\sin (\pi x)\ dx\\\\\\=\left [-\dfrac {x\cos (\pi x)}{\pi}\right]_0^\frac {3}{2}+\dfrac {1}{\pi}\int\limits_0^\frac {3}{2}\cos(\pi x)\ dx\\\\\\=-\dfrac {1}{\pi}\left [x\cos (\pi x)\right]_0^\frac {3}{2}+\dfrac {1}{\pi^2}\int\limits_0^\frac {3}{2}\cos(\pi x)\ d(\pi x)\\\\\\=-\dfrac {1}{\pi}\left [x\cos (\pi x)\right]_0^\frac {3}{2}+\dfrac {1}{\pi^2}\left [\sin (\pi x)\right]_0^{\frac {3}{2}}\\\\\\

=-\dfrac {1}{\pi}\left [\left (\dfrac {3}{2}\cos \left(\dfrac {3\pi}{2}\right)\right)-\left (0\cos (\pi \cdot 0)\right)\right]+\dfrac {1}{\pi^2}\left [\sin \left(\dfrac {3\pi}{2}\right)-\sin (\pi\cdot 0)\right]\\\\\\=-\dfrac {1}{\pi}\left [\left (\dfrac {3}{2}\cdot 0\right)-\left (0\cdot1\right)\right]+\dfrac {1}{\pi^2}\left (-1-0\right)\\\\\\=\large\boxed {\mathbf{-\dfrac {1}{\pi^2}}}

Hence integrated!

Similar questions