how to prove 1+tan²A=sec²A
Answers
Answered by
2
Answer:
1+TAN²A = SEC²A.
THANK YOU .
Tan²A+1=sec²A
Tan²A+1=sec²Ataking LHS
Tan²A+1=sec²Ataking LHStan²A+1
Tan²A+1=sec²Ataking LHStan²A+1tanA=sinA/cosA
Tan²A+1=sec²Ataking LHStan²A+1tanA=sinA/cosAso, using this...
Tan²A+1=sec²Ataking LHStan²A+1tanA=sinA/cosAso, using this...sin²A/cos²A+1
Tan²A+1=sec²Ataking LHStan²A+1tanA=sinA/cosAso, using this...sin²A/cos²A+1(sin²A+cos²A)/cos²A
Tan²A+1=sec²Ataking LHStan²A+1tanA=sinA/cosAso, using this...sin²A/cos²A+1(sin²A+cos²A)/cos²A(sin²A+cos²A=1)
Tan²A+1=sec²Ataking LHStan²A+1tanA=sinA/cosAso, using this...sin²A/cos²A+1(sin²A+cos²A)/cos²A(sin²A+cos²A=1)1/cos²A
Tan²A+1=sec²Ataking LHStan²A+1tanA=sinA/cosAso, using this...sin²A/cos²A+1(sin²A+cos²A)/cos²A(sin²A+cos²A=1)1/cos²Asec²A.
Attachments:
Answered by
0
REFER THE ATTACHMENT
HOPE IT HELPS U !!!!
Attachments:
Similar questions