Math, asked by hussainjesmigmailcom, 10 months ago

how to prove 1+tan²A=sec²A​

Answers

Answered by dasgitanjali007
2

Answer:

1+TAN²A = SEC²A.

THANK YOU .

Tan²A+1=sec²A

Tan²A+1=sec²Ataking LHS

Tan²A+1=sec²Ataking LHStan²A+1

Tan²A+1=sec²Ataking LHStan²A+1tanA=sinA/cosA

Tan²A+1=sec²Ataking LHStan²A+1tanA=sinA/cosAso, using this...

Tan²A+1=sec²Ataking LHStan²A+1tanA=sinA/cosAso, using this...sin²A/cos²A+1

Tan²A+1=sec²Ataking LHStan²A+1tanA=sinA/cosAso, using this...sin²A/cos²A+1(sin²A+cos²A)/cos²A

Tan²A+1=sec²Ataking LHStan²A+1tanA=sinA/cosAso, using this...sin²A/cos²A+1(sin²A+cos²A)/cos²A(sin²A+cos²A=1)

Tan²A+1=sec²Ataking LHStan²A+1tanA=sinA/cosAso, using this...sin²A/cos²A+1(sin²A+cos²A)/cos²A(sin²A+cos²A=1)1/cos²A

Tan²A+1=sec²Ataking LHStan²A+1tanA=sinA/cosAso, using this...sin²A/cos²A+1(sin²A+cos²A)/cos²A(sin²A+cos²A=1)1/cos²Asec²A.

Attachments:
Answered by Mysterioushine
0

REFER THE ATTACHMENT

HOPE IT HELPS U !!!!

Attachments:
Similar questions