Math, asked by vinodharik, 1 year ago

HOW TO PROVE 1+tanA*tanA/2=tanA*cotA/2-1


vinodharik: HOW TO PROVE 1+tanA*tanA/2=tanA*cotA/2-1

Answers

Answered by Garg2723
5
Taking LHS

= 1 + [ tan A. tan (A/2) ]

= 1 + [ sin A. sin (A/2) / cos A. cos (A/2) ]

= [ cos A. cos (A/2) + sin A. sin (A/2) ] / [ cos A. cos (A/2) ]

= [ cos ( A - (A/2) ) ] / [ cos A. cos (A/2) ]

= [ cos (A/2) ] / [ cos A. cos (A/2) ]

= 1 / ( cos A )

= sec ....eqn1


Taking RHS

= [ tan A. cot (A/2) ] - 1

= [ sin A. cos (A/2) / cos A. sin (A/2) ] - 1

= { [ sin A. cos (A/2) - cos A. sin (A/2) ] / [ cos A. sin (A/2) ] }

= { [ sin ( A - A/2 ) ] / [ cos A. sin (A/2) ] }

= [ sin (A/2) ] / [ cos A. sin (A/2) ]

= 1 / ( cos A )

= sec A

= LHS ... from (1)
Similar questions