Math, asked by lordkhoa2404, 1 year ago

How to prove: cos^8(x)-sin^8(x)= 1/4 cos(2x).(3+cos4x)

Answers

Answered by brunoconti
0

Answer:

Step-by-step explanation:

Attachments:
Answered by sivaprasath
0

Step-by-step explanation:

Given

To Prove : cos^8x - sin^8x = \frac{1}{4} cos2x(3+cos4x)

LHS

= cos^8x - sin^8x

= (cos^4x)^2 - (sin^4x)^2

= (cos^4x - sin^4x)(cos^4x + sin^4x)    ∵ a² - b² = (a + b)(a - b)

= ((cos^2x)^2 - sin^2x)^2)((cos^2x)^2 + (sin^2x)^2)

= (cos^2x - sin^2x)(1)((sin^2x + cos^2x)^2 - 2sin^2xcos^2x)

∵ sin²x + cos²x = 1 , cos²x - sin²x = cos2x

= (cos2x)((1)^2 - 2sin^2xcos^2x)

= (cos2x)(1 -2(1-cos^2x)cos^2x)

= (cos2x)(1 -(2-2cos^2x)cos^2x)

= (cos2x)(1 -(2cos^2x-2cos^4x))

= (cos2x)(1 -2cos^2x+2cos^4x))

Multiplying & dividing by 2,

= (\frac{1}{2} )(cos2x)(2)(1 -2cos^2x+2cos^4x))

= (\frac{1}{2} )(cos2x)(2 -4cos^2x+4cos^4x))

= (\frac{1}{2} )(cos2x)(1 + (1 - 4cos^2x + 4cos^4x))

= (\frac{1}{2} )(cos2x)(1 + (2cos^2x - 1)^2)

= (\frac{1}{2} )(cos2x)(1 + (cos2x)^2)

Again, multiplying & Dividing by 2,

We get,

= (\frac{1}{4} )(cos2x)(2)(1 + (cos2x)^2)

= (\frac{1}{4} )(cos2x)(2 +2 (cos2x)^2)

= (\frac{1}{4} )(cos2x)(3 +(2 (cos2x)^2 - 1))

= (\frac{1}{4} )(cos2x)(3 +cos2(2x))

= (\frac{1}{4} )(cos2x)(3 +cos4x)

= RHS

Hence, proved

Similar questions