Math, asked by bizarreworld, 3 months ago

how to prove lhs=rhs​

Attachments:

Answers

Answered by harshika311
0

plz find the attached image.

i hope this helps..

plz mark me as brainliest.

Attachments:
Answered by Intelligentcat
21

Answer:

\implies \bf (Sin^{2} \: A)(Cos^{2} \: B) - (Cos^{2} \: A)(Sin^{2} \: B) = Sin^{2} \: A - Sin^{2} \: B \\ \\

Using Identities :

\bullet \: \: {\boxed{\sf {1 - Sin^{2} \: \theta = Cos^{2} \: \theta }}} \\ \\

\bullet \: \: {\boxed{\sf {Sin^{2} \: \theta = 1 - Cos^{2} \: \theta}}} \\ \\

Let's solve it :

\implies \sf (Sin^{2} \: A)(Cos^{2} \: B) - (Cos^{2} \: A)(Sin^{2} \: B) = Sin^{2} \: A - Sin^{2} \: B \\ \\

\bullet \: \: {\sf {Sin^{2} \: \theta = 1 - Cos^{2} \: \theta}} \\ \\

\implies \sf (Sin^{2} \: A)(1 - Sin^{2} \: B) - (Cos^{2} \: A)(Sin^{2} \: B) = Sin^{2} \: A - Sin^{2} \: B \\ \\

\implies \sf (Sin^{2} \: A)(1) - (Sin^{2} \: A)(Sin^{2} \: B) - (Cos^{2} \: A)(Sin^{2} \: B) = Sin^{2} \: A - Sin^{2} \: B \\ \\

\implies \sf (Sin^{2} \: A) - (Sin^{2} \: A)(Sin^{2} \: B) - (Cos^{2} \: A)(Sin^{2} \: B) = Sin^{2} \: A - Sin^{2} \: B \\ \\

\implies \sf (Sin^{2} \: A) - (Sin^{2} \: A)(Sin^{2} \: B) - (1 - Sin^{2} \: A)(Sin^{2} \: B) = Sin^{2} \: A - Sin^{2} \: B \\ \\

\implies \sf (Sin^{2} \: A) - (Sin^{2} \: A)(Sin^{2} \: B) - (1)(Sin^{2} \: B) - (Sin^{2} \: A)(Sin^{2} \: B) = Sin^{2} \: A - Sin^{2} \: B \\ \\

\implies \sf (Sin^{2} \: A) - (Sin^{2} \: A)(Sin^{2} \: B) - (Sin^{2} \: B) - (Sin^{2} \: A)(Sin^{2} \: B) = Sin^{2} \: A - Sin^{2} \: B \\ \\

\implies \sf (Sin^{2} \: A) - (Sin^{2} \: A)(Sin^{2} \: B) - (Sin^{2} \: B) + (Sin^{2} \: A)(Sin^{2} \: B) = Sin^{2} \: A - Sin^{2} \: B \\ \\

\implies \sf (Sin^{2} \: A) - {\not{(Sin^{2} \: A)(Sin^{2} \: B)}} - (Sin^{2} \: B) + {\not(Sin^{2} \: A)(Sin^{2} \: B)} = Sin^{2} \: A - Sin^{2} \: B \\ \\

\implies \sf (Sin^{2} \: A) - (Sin^{2} \: B) = Sin^{2} \: A - Sin^{2} \: B \\ \\

{\boxed{\bf{L.H.S = R.H.S}}} \\

Verified !!

Similar questions