how to prove sina sin(a+2b)-sinb sin(b+2a)=sin(a-b)sin(a+b)
Answers
Answered by
63
HELLO DEAR,
sina sin(a + 2b) - sinbsin(b + 2a)
⇒ 2 [ sina sin(a + 2b) - sinbsin(b + 2a) ] /2
∴ [ multiply and divide by "2" ]
⇒[ cos(a + 2b - a) - cos(a + 2b + a) - {cos(b + 2a - b) - cos(b + 2a + b) ] /2
∴ [ 2sinAcosB = cos(A - B) - cos(A + B) ]
⇒[ cos(2b) - cos(2a + 2b) - cos(2a) + cos(2a + 2b) ] / 2
⇒[ cos2b - cos2a ] /2
∴ [ cosA - cosB = -2sin(A + B)/2 * sin(A - B)/2 ]
⇒[ -2sin(2a + 2b)/2 * sin(2b - 2a)/2 ] /2
⇒[ -2sin(a + b) * (-)sin(a - b) ] /2
⇒sin(a + b) * sin(a - b)
I HOPE ITS HELP YOU DEAR,
THANKS
sina sin(a + 2b) - sinbsin(b + 2a)
⇒ 2 [ sina sin(a + 2b) - sinbsin(b + 2a) ] /2
∴ [ multiply and divide by "2" ]
⇒[ cos(a + 2b - a) - cos(a + 2b + a) - {cos(b + 2a - b) - cos(b + 2a + b) ] /2
∴ [ 2sinAcosB = cos(A - B) - cos(A + B) ]
⇒[ cos(2b) - cos(2a + 2b) - cos(2a) + cos(2a + 2b) ] / 2
⇒[ cos2b - cos2a ] /2
∴ [ cosA - cosB = -2sin(A + B)/2 * sin(A - B)/2 ]
⇒[ -2sin(2a + 2b)/2 * sin(2b - 2a)/2 ] /2
⇒[ -2sin(a + b) * (-)sin(a - b) ] /2
⇒sin(a + b) * sin(a - b)
I HOPE ITS HELP YOU DEAR,
THANKS
Answered by
15
Thanks for the question!
It is definitely a very interesting question to solve and do some brainstorming.
**************************************************
Given,
sina sin(a + 2b) - sinb sin(b + 2a)
= 2 {sina sin(a + 2b) - sinbsin(b + 2a) } /2
= cos(a + 2b - a) - cos(a + 2b + a) - {cos(b + 2a - b) - cos(b + 2a + b) }/2
Since, [ 2sinAcosB = cos(A - B) - cos(A + B) ]
= {cos(2b) - cos(2a + 2b) - cos(2a) + cos(2a + 2b) } / 2
= ( cos2b - cos2a ) /2
Also, we know { cosA - cosB = -2sin(A + B)/2 * sin(A - B)/2 }
= { -2sin(2a + 2b)/2 * sin(2b - 2a)/2 }/2
={ -2sin(a + b) * (-)sin(a - b)} /2
= sin(a + b) * sin(a - b)
Hence, Proved
**************************************************
Hope it helps and solves your query!!
It is definitely a very interesting question to solve and do some brainstorming.
**************************************************
Given,
sina sin(a + 2b) - sinb sin(b + 2a)
= 2 {sina sin(a + 2b) - sinbsin(b + 2a) } /2
= cos(a + 2b - a) - cos(a + 2b + a) - {cos(b + 2a - b) - cos(b + 2a + b) }/2
Since, [ 2sinAcosB = cos(A - B) - cos(A + B) ]
= {cos(2b) - cos(2a + 2b) - cos(2a) + cos(2a + 2b) } / 2
= ( cos2b - cos2a ) /2
Also, we know { cosA - cosB = -2sin(A + B)/2 * sin(A - B)/2 }
= { -2sin(2a + 2b)/2 * sin(2b - 2a)/2 }/2
={ -2sin(a + b) * (-)sin(a - b)} /2
= sin(a + b) * sin(a - b)
Hence, Proved
**************************************************
Hope it helps and solves your query!!
Similar questions
Political Science,
8 months ago
Psychology,
8 months ago
Chemistry,
1 year ago
Physics,
1 year ago
Math,
1 year ago