How to prove that
Answers
Answered by
2
Step-by-step explanation:
Given :-
Sin x / ( Cos x +1)
To find :-
Prove that Sin x / ( Cos x +1) = Tan x/2
Solution :-
On taking LHS
Sin x / ( Cos x +1)
We know that
Sin x = 2 Sin (x/2) Cos (x/2)
and
Cos x = 2 Cos² (x/2) - 1
Using these identities in the given expression then
=>[2 Sin (x/2) Cos (x/2)]/[ 2 Cos² (x/2) -1+1]
=> [2 Sin (x/2) Cos (x/2)]/[2 Cos² (x/2)]
=> [2Sin (x/2)Cos(x/2)]/[2Cos(x/2)Cos(x/2)]
On cancelling 2 Cos (x/2) in both numerator and denominator then
=> Sin (x/2) / Cos (x/2)
=> Tan (x/2)
=> RHS
=> LHS = RHS
Hence, Proved.
Used formulae:-
→ Sin x = 2 Sin (x/2) Cos (x/2)
→ Cos x = 2 Cos² (x/2) - 1
→ Tan x = Sin x / Cos x
Similar questions
English,
25 days ago
Computer Science,
25 days ago
Science,
1 month ago
Chemistry,
9 months ago
English,
9 months ago
Computer Science,
9 months ago