Math, asked by rabinagyadav, 8 months ago

How to prove the following:
1+sin2A/1-sin2A=(cotA+1/cotA-1)2

Answers

Answered by MaheswariS
5

\underline{\textsf{To prove:}}

\mathsf{\dfrac{1+sin2A}{1-sin2A}=(\dfrac{cotA+1}{cotA-1})^2}

\underline{\textsf{Solution:}}

\textsf{Consider,}

\mathsf{\dfrac{1+sin2A}{1-sin2A}}

\mathsf{=\dfrac{cos^2A+sin^2A+2\,cosA\,sinA}{cos^2A+sin^2A-2\,cosA\,sinA}}

\mathsf{=\dfrac{(cosA+sinA)^2}{(cosA-sinA)^2}}

\textsf{Taking sinA common from both numerator and denominator}

\mathsf{=\dfrac{sin^2A(\dfrac{cosA}{sinA}+1)^2}{sin^2A(\dfrac{cosA}{sinA}-1)^2}}

\mathsf{=\dfrac{(\dfrac{cosA}{sinA}+1)^2}{(\dfrac{cosA}{sinA}-1)^2}}

\mathsf{=\dfrac{(cotA+1)^2}{(cotA-1)^2}}

\implies\boxed{\mathsf{\dfrac{1+sin2A}{1-sin2A}=(\dfrac{cotA+1}{cotA-1})^2}}

Find more:

Prove that 1-sin^2x/1+cotx-cos^2x/1+tanx=sinxcossx

https://brainly.in/question/4927186

Tan(π/4+x)-tan(π/4-x)=2tan 2x

https://brainly.in/question/10999329

Similar questions