Math, asked by hardcorehenry, 1 year ago

how to prove the question above​

Attachments:

Answers

Answered by ihrishi
2

Answer:

3log(a + b) = log(a + b)  + 2loga  + log \: (1 +  \frac{2b}{a}  +  \frac{ {b}^{2} }{ {a}^{2} } ) \\ rhs =  log(a + b)  + 2loga  + log \: (1 +  \frac{2b}{a}  +  \frac{ {b}^{2} }{ {a}^{2} } ) \:  \\  = log(a + b)  + loga ^{2}   + log \: ( \frac{ {a}^{2} + 2ab +  {b}^{2}  }{ {a}^{2} } ) \\ = log(a + b)  + loga ^{2}   + log \: \frac{(a + b) ^{2} }{ {a}^{2} }  \\  = log \:  \{(a + b) \times  {a}^{2}  \times  \frac{(a + b) ^{2} }{ {a}^{2} } \} \\  = log \:  \{(a + b) \times (a + b)  ^{2}  \} \\  = log(a + b)^{3}  \\  = 3 \: log \: (a + b) \\  = lhs \\ thus \: proved. \\  \\ please \: mark \: it \: as \: brainliest.

Similar questions