Math, asked by milan4411, 10 months ago

How to prove this ??

Attachments:

Answers

Answered by XxxXXJAYXXxxX
1

Answer:

LHS = A² + B²

=(SIN ∅ + COS ∅)² + (SIN ∅ - COS ∅)²

=(SIN² ∅ + COS² ∅ + 2SIN∅COS∅) + (SIN²∅ + COS² ∅ -2SIN∅COS∅)

=2(SIN²∅+COS²∅)

SINCE BY PROVEN IDENTITY, SIN²∅ + COS²∅ =1

=2*1

=2

=RHS

Answered by 007Boy
4

Answer:

Given :-

 \sin( \alpha )  +  \cos( \alpha )  = a \\  \sin( \alpha )  -  \cos( \alpha )  = b

What to prove =

a {}^{2}  + b {}^{2}  = 2

Solution :-

 \sin ( \alpha )  +  \cos( \alpha )  = a \:  \\ square \: both \: of \: the \: sides \\ ( \sin( \alpha )  +  \cos( \alpha ) ) {}^{2}  = a {}^{2}  \\  \sin {}^{2} ( \alpha )  +  \cos {}^{2} ( \alpha )  + 2 \sin( \alpha )  \times  \cos( \alpha )  = a {}^{2}  \:  \: (equa. \: 1) \\  \sin( \alpha )  -  \cos( \alpha )  = b \\ square \: both \: of \: the \: sides \\ we \: get: \\  \sin {}^{2} ( \alpha ) +   \cos {}^{2} ( \alpha )  -2  \sin( \alpha )  \cos( \alpha )  = b {}^{2}  \:  \: (equa. \: 2) \\ now \: add \: equa \: (1) \:  \: and \: equa \: (2) \: \\  we \: get :\\ 2 \sin {}^{2} ( \alpha )  + 2 \cos {}^{2} ( \alpha )  = a {}^{2}  + b {}^{2}  \\ 2( \sin {}^{2} ( \alpha ) +   \cos {}^{2} ( \alpha ) ) = a {}^{2}  + b {}^{2}

∵  \: \sin {}^{2} ( \alpha )  +  \cos {}^{2} ( \alpha )  = 1 \\ ∴ \: a {}^{2} + b {}^{2}   = 2(1) \\ a {}^{2}  + b {}^{2}  = 2 \:  \: proved

Similar questions