how to prove this ? Question iv
Attachments:
Answers
Answered by
0
easy hai value put karo air ho jaiga
Ananya0021:
i need to show how are they equal
Answered by
2
3)
LHS = cot²A/(cosecA-1)²
LHS = (cosec²A - 1)/(cosecA-1)(cosecA-1)
LHS = (cosecA+1)(cosecA-1)/(cosecA-1)(cosecA-1)
LHS = cosecA+1/cosecA-1
LHS = (1/sinA + 1)/(1/sinA -1)
LHS = (1+sinA/sinA)/(1-sinA/sinA)
LHS = 1+sinA/sinA × sinA/1-sinA
LHS = 1+sinA/1-sinA
LHS = RHS
4)
LHS = 1-(sin²A/1+cosA )
LHS = 1-(1-cos²A/1+cosA)
LHS = 1 - (1+cosA)(1-cosA)/(1+cosA)
LHS = 1 - (1-cosA)
LHS = 1-1+cosA
LHS = cosA
LHS = RHS
1)
LHS = 1+tan²A/1+cot²A
LHS = (1 + sin²A/cos²A)/(1 + cos²A/sin²A)
LHS = (cos²A+sin²A/cos²A)/(sin²A+cos²A/sin²A)
LHS = (1/cos²A)/(1/sin²A)
LHS = 1/cos²A × sin²A/1
LHS = sin²A/cos²
LHS = tan²A _____________(1)
RHS = (1-tanA)²/(1-cot)²
RHS = (1 - tanA/1-cotA)²
RHS = [(1 - sinA/cosA)/(1 - cosA/sinA)]²
RHS = [(cosA-sinA/cosA)/(sinA-cosA/sinA)]²
RHS = [(cosA-sinA/cosA) × (sinA/sinA-cosA)]²
RHS = [ (cosA-sinA/cosA) × sinA/-(cosA-sinA)]²
RHS = [ 1/cosA × sinA/-1 ]²
RHS = [ -sinA/cosA]²
RHS = (-tanA)² (-tanA × -tanA = +tan²A)
RHS = tan²A. _____________(2)
by comparing equation (1) and (2) we can say that
LHS = RHS
LHS = cot²A/(cosecA-1)²
LHS = (cosec²A - 1)/(cosecA-1)(cosecA-1)
LHS = (cosecA+1)(cosecA-1)/(cosecA-1)(cosecA-1)
LHS = cosecA+1/cosecA-1
LHS = (1/sinA + 1)/(1/sinA -1)
LHS = (1+sinA/sinA)/(1-sinA/sinA)
LHS = 1+sinA/sinA × sinA/1-sinA
LHS = 1+sinA/1-sinA
LHS = RHS
4)
LHS = 1-(sin²A/1+cosA )
LHS = 1-(1-cos²A/1+cosA)
LHS = 1 - (1+cosA)(1-cosA)/(1+cosA)
LHS = 1 - (1-cosA)
LHS = 1-1+cosA
LHS = cosA
LHS = RHS
1)
LHS = 1+tan²A/1+cot²A
LHS = (1 + sin²A/cos²A)/(1 + cos²A/sin²A)
LHS = (cos²A+sin²A/cos²A)/(sin²A+cos²A/sin²A)
LHS = (1/cos²A)/(1/sin²A)
LHS = 1/cos²A × sin²A/1
LHS = sin²A/cos²
LHS = tan²A _____________(1)
RHS = (1-tanA)²/(1-cot)²
RHS = (1 - tanA/1-cotA)²
RHS = [(1 - sinA/cosA)/(1 - cosA/sinA)]²
RHS = [(cosA-sinA/cosA)/(sinA-cosA/sinA)]²
RHS = [(cosA-sinA/cosA) × (sinA/sinA-cosA)]²
RHS = [ (cosA-sinA/cosA) × sinA/-(cosA-sinA)]²
RHS = [ 1/cosA × sinA/-1 ]²
RHS = [ -sinA/cosA]²
RHS = (-tanA)² (-tanA × -tanA = +tan²A)
RHS = tan²A. _____________(2)
by comparing equation (1) and (2) we can say that
LHS = RHS
Similar questions